7 research outputs found

    Exact Baryon, Strangeness and Charge Conservation in Hadronic Gas Models

    Get PDF
    Relativistic heavy ion collisions are studied assuming that particles can be described by a hadron gas in thermal and chemical equilibrium. The exact conservation of baryon number, strangeness and charge are explicitly taken into account. For heavy ions the effect arising from the neutron surplus becomes important and leads to a substantial increase in e.g. the π/π+\pi^-/\pi^+ ratio. A method is developed which is very well suited for the study of small systems.Comment: 5 pages, 5 Postscript figure

    Isospin Fluctuations from a Thermally Equilibrated Hadron Gas

    Full text link
    Partition functions, multiplicity distributions, and isospin fluctuations are calculated for canonical ensembles in which additive quantum numbers as well as total isospin are strictly conserved. When properly accounting for Bose-Einstein symmetrization, the multiplicity distributions of neutral pions in a pion gas are significantly broader as compared to the non-degenerate case. Inclusion of resonances compensates for this broadening effect. Recursion relations are derived which allow calculation of exact results with modest computer time.Comment: 10 pages, 5 figure

    The Legacy of Rolf Hagedorn: Statistical Bootstrap and Ultimate Temperature

    Get PDF
    In the latter half of the last century, it became evident that there exists an ever increasing number of different states of the so-called elementary particles. The usual reductionist approach to this problem was to search for a simpler infrastructure, culminating in the formulation of the quark model and quantum chromodynamics. In a complementary, completely novel approach, Hagedorn suggested that the mass distribution of the produced particles follows a self-similar composition pattern, predicting an unbounded number of states of increasing mass. He then concluded that such a growth would lead to a limiting temperature for strongly interacting matter. We discuss the conceptual basis for this approach, its relation to critical behavior, and its subsequent applications in different areas of high energy physics.Comment: 25 pages, 5 figures; to appear in R. Hagedorn and J. Rafelski (Ed.), "Melting Hadrons, Boiling Quarks", Springer Verlag 201

    Influence of Impact Parameter on Thermal Description of Relativistic Heavy Ion Collisions at GSI/SIS

    Get PDF
    Attention is drawn to the role played by the size of the system in the thermodynamic analysis of particle yields in relativistic heavy ion collisions at SIS energies. This manifests itself in the non-linear dependence of K+ and K- yields in AAAA collisions at 1 -- 2 A.GeV on the number of participants. It is shown that this dependence can be quantitatively well described in terms of a thermal model with a canonical strangeness conservation. The measured particle multiplicity ratios (pi+/p, pi-/pi+, d/p, K+/pi+ and K+/K- but not eta/pi0) in central Au-Au and Ni-Ni collisions at 0.8 -- 2.0 A.GeV are also explained in the context of a thermal model with a common freeze-out temperature and chemical potential. Including the concept of collective flow a consistent picture of particle energy distributions is derived with the flow velocity being strongly impact-parameter dependent.Comment: revtex, 20 figure
    corecore