31,818 research outputs found

    Turbid water measurements of remote sensing penetration depth at visible and near-infrared wavelength

    Get PDF
    Remote sensing of water quality is dicussed. Remote sensing penetration depth is a function both of water type and wavelength. Results of three tests to help demonstrate the magnitude of this dependence are presented. The water depth to which the remote-sensor data was valid was always less than that of the Secchi disk depth, although not always the same fraction of that depth. The penetration depths were wavelength dependent and showed the greatest variation for the water type with largest Secchi depth. The presence of a reflective plate, simulating a reflective subsurface, increased the apparent depth of light penetration from that calculated for water of infinite depth

    12 New Galactic Wolf-Rayet Stars Identified via 2MASS+Spitzer/GLIMPSE

    Get PDF
    We report new results from our effort to identify obscured Wolf-Rayet stars in the Galaxy. Candidates were selected by their near-infrared (2MASS) and mid-infrared (Spitzer/GLIMPSE) color excesses, which are consistent with free-free emission from ionized stellar winds and thermal excess from hot dust. We have confirmed 12 new Wolf-Rayet stars in the Galactic disk, including 9 of the nitrogen subtype (WN), and 3 of the carbon subtype (WC); this raises the total number of Wolf-Rayet stars discovered with our approach to 27. We classify one of the new stars as a possible dust-producing WC9d+OBI colliding-wind binary, as evidenced by an infrared excess resembling that of known WC9d stars, the detection of OBI features superimposed on the WC9 spectrum, and hard X-ray emission detected by XMM-Newton. A WC8 star in our sample appears to be a member of the stellar cluster Danks 1, in contrast to the rest of the confirmed Wolf-Rayet stars that generally do not appear to reside within dense stellar clusters. Either the majority of the stars are runaways from clusters, or they formed in relative isolation. We briefly discuss prospects for the expansion and improvement of the search for Wolf-Rayet stars throughout the Milky Way Galaxy.Comment: Submitted to PASP March 12, 2009; Accepted on May 14, 200

    Red Eyes on Wolf-Rayet Stars: 60 New Discoveries via Infrared Color Selection

    Get PDF
    We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars, including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry from the Spitzer/GLIMPSE and 2MASS databases, the WRs were selected via a method we have established that exploits their unique infrared colors, which is mainly the result of excess radiation from free-free scattering within their dense ionized winds. The selection criteria has been refined since our last report, and now yields WRs at a rate of ~20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution of all known WRs having B>14 mag. However, there are subregions within the broad color space which yield WRs at a rate of >50%. Cross-correlation of WR candidates with archival X-ray point-source catalogs increases the WR detection rate of the broad color space to ~40%; ten new WR X-ray sources have been found, in addition to a previously unrecognized X-ray counterpart to a known WR. The extinction values, distances, and galactocentric radii of all new WRs are calculated using the method of spectroscopic parallax. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster that lies near the intersection of the Scutum-Centaurus Arm and the Galaxy's bar, in which five OB supergiants were also identified. In addition, two WC and four WN stars were identified in association with the stellar clusters Danks 1 and 2. A WN9 star has also been associated with the cluster [DBS2003] 179. This work brings the total number of known Galactic WRs to 476, or ~7-8% of the total empirically estimated population. An examination of their Galactic distribution reveals a tracing of spiral arms and an enhanced WR surface density toward several massive-star formation sites (abridged).Comment: Accepted to the Astronomical Journal on May 20, 2011. Document is 39 pages, including 20 figures and 8 table

    Wave spectra of a shoaling wave field: A comparison of experimental and simulated results

    Get PDF
    Wave profile measurements made from an aircraft crossing the North Carolina continental shelf after passage of Tropical Storm Amy in 1975 are used to compute a series of wave energy spectra for comparison with simulated spectra. Results indicate that the observed wave field experiences refraction and shoaling effects causing statistically significant changes in the spectral density levels. A modeling technique is used to simulate the spectral density levels. Total energy levels of the simulated spectra are within 20 percent of those of the observed wave field. The results represent a successful attempt to theoretically simulate, at oceanic scales, the decay of a wave field which contains significant wave energies from deepwater through shoaling conditions

    Laboratory upwelled radiance and reflectance spectra of Kerr reservoir sediment waters

    Get PDF
    Reflectance, chromaticity, and several other physical and chemical properties were measured for various water mixtures of bottom sediments taken from two sites at Kerr Reservoir, Virginia. Mixture concentrations ranged from 5 to 1000 ppm by weight of total suspended solids (TSS) in filtered deionized tap water. The two sets of radiance and reflectance spectra obtained were similar in shape and magnitude for comparable values of TSS. Upwelled reflectance was observed to be a nonlinear function of TSS with the degree of curvature a function of wavelength. Sediment from the downstream site contained a greater amount of particulate organic carbon than from the upstream site. No strong conclusions can be made regarding the effects of this difference on the radiance and reflectance spectra. Near-infrared wavelengths appear useful for measuring highly turbid water with concentrations up to 1000 ppm or more. Chromaticity characteristics do not appear useful for monitoring sediment loads above 150 ppm

    Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel

    Get PDF
    The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research

    Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    Get PDF
    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude

    Wave climate model of the Mid-Atlantic shelf and shoreline (Virginian Sea): Model development, shelf geomorphology, and preliminary results

    Get PDF
    A computerized wave climate model is developed that applies linear wave theory and shelf depth information to predict wave behavior as they pass over the continental shelf as well as the resulting wave energy distributions along the coastline. Reviewed are also the geomorphology of the Mid-Atlantic Continental Shelf, wave computations resulting from 122 wave input conditions, and a preliminary analysis of these data

    The H1 Forward Track Detector at HERA II

    Full text link
    In order to maintain efficient tracking in the forward region of H1 after the luminosity upgrade of the HERA machine, the H1 Forward Track Detector was also upgraded. While much of the original software and techniques used for the HERA I phase could be reused, the software for pattern recognition was completely rewritten. This, along with several other improvements in hit finding and high-level track reconstruction, are described in detail together with a summary of the performance of the detector.Comment: Minor revision requested by journal (JINST) edito
    • …
    corecore