247 research outputs found
Diameter and Chirality Dependence of Exciton Properties in Carbon Nanotubes
We calculate the diameter and chirality dependences of the binding energies,
sizes, and bright-dark splittings of excitons in semiconducting single-wall
carbon nanotubes (SWNTs). Using results and insights from {\it ab initio}
calculations, we employ a symmetry-based, variational method based on the
effective-mass and envelope-function approximations using tight-binding
wavefunctions. Binding energies and spatial extents show a leading dependence
with diameter as and , respectively, with chirality corrections
providing a spread of roughly 20% with a strong family behavior. Bright-dark
exciton splittings show a leading dependence. We provide analytical
expressions for the binding energies, sizes, and splittings that should be
useful to guide future experiments
Fano resonances in a three-terminal nanodevice
The electron transport through a quantum sphere with three one-dimensional
wires attached to it is investigated. An explicit form for the transmission
coefficient as a function of the electron energy is found from the first
principles. The asymmetric Fano resonances are detected in transmission of the
system. The collapse of the resonances is shown to appear under certain
conditions. A two-terminal nanodevice with an additional gate lead is studied
using the developed approach. Additional resonances and minima of transmission
are indicated in the device.Comment: 11 pages, 5 figures, 2 equations are added, misprints in 5 equations
are removed, published in Journal of Physics: Condensed Matte
Corrigendum: A Review of the Energy Performance Gap and Its Underlying Causes in Non-Domestic Buildings
Scaling of excitons in carbon nanotubes
Light emission from carbon nanotubes is expected to be dominated by excitonic
recombination. Here we calculate the properties of excitons in nanotubes
embedded in a dielectric, for a wide range of tube radii and dielectric
environments. We find that simple scaling relationships give a good description
of the binding energy, exciton size, and oscillator strength.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let
Exciton-plasmon states in nanoscale materials: breakdown of the Tamm-Dancoff approximation
Within the Tamm-Dancoff approximation ab initio approaches describe excitons
as packets of electron-hole pairs propagating only forward in time. However, we
show that in nanoscale materials excitons and plasmons hybridize, creating
exciton--plasmon states where the electron-hole pairs oscillate back and forth
in time. Then, as exemplified by the trans-azobenzene molecule and carbon
nanotubes, the Tamm-Dancoff approximation yields errors as large as the
accuracy claimed in ab initio calculations. Instead, we propose a general and
efficient approach that avoids the Tamm--Dancoff approximation, and correctly
describes excitons, plasmons and exciton-plasmon states
Excitonic Effects on Optical Absorption Spectra of Doped Graphene
We have performed first-principles calculations to study optical absorption
spectra of doped graphene with many-electron effects included. Both self-energy
corrections and electron-hole interactions are reduced due to the enhanced
screening in doped graphene. However, self-energy corrections and excitonic
effects nearly cancel each other, making the prominent optical absorption peak
fixed around 4.5 eV under different doping conditions. On the other hand, an
unexpected increase of the optical absorbance is observed within the infrared
and visible-light frequency regime (1 ~ 3 eV). Our analysis shows that a
combining effect from the band filling and electron-hole interactions results
in such an enhanced excitonic effect on the optical absorption. These unique
variations of the optical absorption of doped graphene are of importance to
understand relevant experiments and design optoelectronic applications.Comment: 15 pages, 5 figures; Nano Lett., Article ASAP (2011
Field-effect transistors assembled from functionalized carbon nanotubes
We have fabricated field effect transistors from carbon nanotubes using a
novel selective placement scheme. We use carbon nanotubes that are covalently
bound to molecules containing hydroxamic acid functionality. The functionalized
nanotubes bind strongly to basic metal oxide surfaces, but not to silicon
dioxide. Upon annealing, the functionalization is removed, restoring the
electronic properties of the nanotubes. The devices we have fabricated show
excellent electrical characteristics.Comment: 5 pages, 6 figure
First direct observation of Dirac fermions in graphite
Originating from relativistic quantum field theory, Dirac fermions have been
recently applied to study various peculiar phenomena in condensed matter
physics, including the novel quantum Hall effect in graphene, magnetic field
driven metal-insulator-like transition in graphite, superfluid in 3He, and the
exotic pseudogap phase of high temperature superconductors. Although Dirac
fermions are proposed to play a key role in these systems, so far direct
experimental evidence of Dirac fermions has been limited. Here we report the
first direct observation of massless Dirac fermions with linear dispersion near
the Brillouin zone (BZ) corner H in graphite, coexisting with quasiparticles
with parabolic dispersion near another BZ corner K. In addition, we report a
large electron pocket which we attribute to defect-induced localized states.
Thus, graphite presents a novel system where massless Dirac fermions,
quasiparticles with finite effective mass, and defect states all contribute to
the low energy electronic dynamics.Comment: Nature Physics, in pres
- …
