3,399 research outputs found

    Experimental and theoretical electronic structure of EuRh2As2

    Get PDF
    The Fermi surfaces (FS's) and band dispersions of EuRh2As2 have been investigated using angle-resolved photoemission spectroscopy. The results in the high-temperature paramagnetic state are in good agreement with the full potential linearized augmented plane wave calculations, especially in the context of the shape of the two-dimensional FS's and band dispersion around the Gamma (0,0) and X (pi,pi) points. Interesting changes in band folding are predicted by the theoretical calculations below the magnetic transition temperature Tn=47K. However, by comparing the FS's measured at 60K and 40K, we did not observe any signature of this transition at the Fermi energy indicating a very weak coupling of the electrons to the ordered magnetic moments or strong fluctuations. Furthermore, the FS does not change across the temperature (~ 25K) where changes are observed in the Hall coefficient. Notably, the Fermi surface deviates drastically from the usual FS of the superconducting iron-based AFe2As2 parent compounds, including the absence of nesting between the Gamma and X FS pockets.Comment: 4 pages, 4 figure

    Discovery of Pulsed X-ray Emission from the SMC Transient RX J0117.6-7330

    Get PDF
    We report on the detection of pulsed, broad-band, X-ray emission from the transient source RX J0117.6-7330. The pulse period of 22 seconds is detected by the ROSAT/PSPC instrument in a 1992 Sep 30 - Oct 2 observation and by the CGRO/BATSE instrument during the same epoch. Hard X-ray pulsations are detectable by BATSE for approximately 100 days surrounding the ROSAT observation (1992 Aug 28 - Dec 8). The total directly measured X-ray luminosity during the ROSAT observation is 1.0E38 (d/60 kpc)^2 ergs s-1. The pulse frequency increases rapidly during the outburst, with a peak spin-up rate of 1.2E-10 Hz s-1 and a total frequency change 1.8%. The pulsed percentage is 11.3% from 0.1-2.5 keV, increasing to at least 78% in the 20-70 keV band. These results establish RX J0117.6-7330 as a transient Be binary system.Comment: 17 pages, Latex, aasms, accepted for publication in ApJ Letter

    Physical Properties of Metallic Antiferromagnetic CaCo{1.86}As2 Single Crystals

    Full text link
    We report studies of CaCo{1.86}As2 single crystals. The electronic structure is probed by angle-resolved photoemission spectroscopy (ARPES) measurements of CaCo{1.86}As2 and by full-potential linearized augmented-plane-wave calculations for the supercell Ca8Co15As16 (CaCo{1.88}As2). Our XRD crystal structure refinement is consistent with the previous combined refinement of x-ray and neutron powder diffraction data showing a collapsed-tetragonal ThCr2Si2-type structure with 7(1)% vacancies on the Co sites corresponding to the composition CaCo{1.86}As2 [D. G. Quirinale et al., Phys. Rev. B 88, 174420 (2013)]. The anisotropic magnetic susceptibility chi(T) data are consistent with the magnetic neutron diffraction data of Quirianale et al. that demonstrate the presence of A-type collinear antiferromagnetic order below the Neel temperature TN = 52(1) K with the easy axis being the tetragonal c axis. However, no clear evidence from the resistivity rho(T) and heat capacity Cp(T) data for a magnetic transition at TN is observed. A metallic ground state is demonstrated from band calculations and the rho(T), Cp(T) and ARPES data, and spin-polarized calculations indicate a competition between the A-type AFM and FM ground states. The Cp(T) data exhibit a large Sommerfield electronic coefficient reflecting a large density of states at the Fermi energy D(EF), consistent with the band structure calculations which also indicate a large D(EF) arising from Co 3d bands. At 1.8 K the M(H) data for H|| c exhibit a well-defined first-order spin-flop transition at an applied field of 3.5 T. The small ordered moment of 0.3 muB/Co obtained from the M(H) data at low T, the large exchange enhancement of chi and the lack of a self-consistent interpretation of the chi(T) and M(H,T) data in terms of a local moment Heisenberg model together indicate that the magnetism of CaCo{1.86}As2 is itinerant.Comment: 18 pages, 15 figures, 4 tables, 61 references; v2: extended the fits of experimental data by additional electronic structure calculations; published versio

    Swine Producer Appraisal of the Community Assessment Model for Odor Dispersion (CAM)

    Get PDF
    The community assessment model (CAM) for odor dispersion is a tool to assist in the siting of swine production facilities. CAM considers the size and type of a swine production system, local historical weather conditions, and odor control implementation. It predicts the number of hours of exposure to various levels of odor, by month, for each receptor in a given community. A follow-up survey of all CAM users since 2005 was conducted. The survey was designed to provide: 1) formative feedback for programming adjustments to improve Extension efficiency, usability, and reduce costs; and 2) summative feedback used to provide an indirect baseline assessment of the broader impact that CAM has had on reducing odor-related conflict. For the majority of producers who used CAM, the potential impacts to their neighbors factored heavily into decisions. CAM was believed to be very important to the siting process. A high majority (95%) of producers clearly understood the model results. Over half communicated these results to their neighbors where a third of these were considered positive interactions. Overall, for producers who went on to build at sites that were modeled there was a significant improvement in neighbor relations. CAM continues to evolve as a tool, with the addition of more refined odor dispersion parameters and the ability to include cattle and poultry. The state of Iowa has passed legislation that would, when funding is made available, integrate the use of CAM into odor management policy

    Control algorithm development and simulation for comparing evaporative pads and sprinklers for grow-finish pigs

    Get PDF
    Seasonal variability attributed to heat stress (HS) has a large economic impact on the US swine industry by reducing daily gain and finishing market weights. Strategies to mitigate HS lack evidence showing effectiveness in different climates and have not been adequately controlled to provide a thermally optimum environment for pigs. Hence, the goal of this study was to describe the initial experimental design and instrumentation as well as develop innovative control algorithms for operating evaporative pads (EPs) and sprinklers. Located in northeast Iowa, a four room (~1,875 head per room) grow-finish facility featured side-by-side rooms separated by a hallway. Three thermal environment sensor arrays (TESAs) quantifying dry-bulb and globe temperature, relative humidity, and airspeed were placed in each room and served as feedback for control system to evaluate the thermal environment and potential HS conditions. The newly developed housed swine heat stress index (HS2I) combines TESA measurements and optional wetted skin to assess the potential for HS onset. Custom software interfaced with a multifunction data acquisition board was used to condition TESA signals and control EP pumps and sprinkler solenoids. A control algorithm was developed and simulated using data collected during a 23-d period in July 2017 to preliminarily evaluate the robustness and potential control decisions. Linear models developed to predict indoor dry-/wet-bulb temperature showed good agreement with measured data and will be critical for developing a control systems to selects the best cooling system given forecasted ambient conditions

    Thermal environment assessment and controller performance comparison for a wean-finish barn

    Get PDF
    The thermal environment (TE) inside swine facilities has a substantial impact on animal growth performance and facility energy usage; therefore, proper control and measurement are required to maintain the optimal TE that maximizes feed efficiency and consumes minimal resources. An inexpensive and novel network of 44 thermal environment sensor arrays (TESAs) capable of capturing the spatial and temporal distribution of the TE were deployed in August 2016 inside a two-room (designated as North; N and South; S), wean-finish barn (~1200 hd and 22 TESAs per room) and placed about 1.8 m above the slatted floor. All TESAs simultaneously measured and averaged 20 samples of dry-bulb temperature, back globe temperature, airspeed, and relative humidity at 1 min intervals. The objectives of this research were to: (1) summarize the TE observations from this monitoring period and (2) develop some preliminary analysis methods to quantitatively compare the TE in each room. Each room of the fully mechanically, power-tunnel ventilated facility featured independent TE control (i.e., fan, heater, inlet, and tunnel curtain operation) by a unique ventilation controller. A set point uniformity coefficient (γSP; binned by ambient temperature; ta) was used to assess ventilation controller performance and a two-sample (from random subsampling of ta bins) t-test was used to test if γSP in each room was statistically different. Results showed a statistically significant difference between N and S room γSP for ta bins8°C (p = 0.26; p = 0.07; p = 0.73; p = 0.31). This is a preliminary and novel approach to assessing ventilation controller performance and future approaches will need incorporate all parameters of the TE
    corecore