119 research outputs found

    Residual donors and compensation in metalorganic chemical vapor deposition as-grown n-GaN

    Get PDF
    In our recent report, [Xu et al., Appl. Phys. Lett. 76, 152 (2000)], profile distributions of five elements in the GaN/sapphire system have been obtained using secondary ion-mass spectroscopy. The results suggested that a thin degenerate n+ layer at the interface is the main source of the n-type conductivity for the whole film. The further studies in this article show that this n+ conductivity is not only from the contribution of nitride-site oxygen (ON), but also from the gallium-site silicon (SiGa) donors, with activation energies 2 meV (for ON) and 42 meV (for SiGa), respectively. On the other hand, Al incorporated on the Ga sublattice reduces the concentration of compensating Ga-vacancy acceptors. The two-donor two-layer conduction, including Hall carrier concentration and mobility, has been modeled by separating the GaN film into a thin interface layer and a main bulk layer of the GaN film. The bulk layer conductivity is to be found mainly from a near-surface thin layer and is temperature dependent. SiGa and ON should also be shallow donors and VGa-O or VGa-Al should be compensation sites in the bulk layer. The best fits for the Hall mobility and the Hall concentration in the bulk layer were obtained by taking the acceptor concentration NA=1.8×1017 cm-3, the second donor concentration ND2=1.0×1018 cm-3, and the compensation ratio C=NA/ND1=0.6, which is consistent with Rode's theory. Saturation of carriers and the low value of carrier mobility at low temperature can also be well explained. © 2001 American Institute of Physics.published_or_final_versio

    Influence of indium-tin-oxide thin-film quality on reverse leakage current of indium-tin-oxide/n-GaN Schottky contacts

    Get PDF
    Indium-tin-oxide (ITO)/n-GaN Schottky contacts were prepared by e-beam evaporation at 200°C under various partial pressures of oxygen. X-ray photoemission spectroscopy and positron beam measurements were employed to obtain chemical and structural information of the deposited ITO films. The results indicated that the observed variation in the reverse leakage current of the Schottky contact and the optical transmittance of the ITO films were strongly dependent on the quality of the ITO film. The high concentration of point defects at the ITO-GaN interface is suggested to be responsible for the large observed leakage current of the ITO/n-GaN Schottky contacts. © 2005 American Institute of Physics.published_or_final_versio

    Gallium vacancy and the residual acceptor in undoped GaSb studied by positron lifetime spectroscopy and photoluminescence

    Get PDF
    Positron lifetime, photoluminescence (PL), and Hall measurements were performed to study undoped p-type gallium antimonide materials. A 314 ps positron lifetime component was attributed to Ga vacancy (V Ga) related defect. Isochronal annealing studies showed at 300°C annealing, the 314 ps positron lifetime component and the two observed PL signals (777 and 797 meV) disappeared, which gave clear and strong evidence for their correlation. However, the hole concentration (∌2×10 17cm -3) was observed to be independent of the annealing temperature. Although the residual acceptor is generally related to the V Ga defect, at least for cases with annealing temperatures above 300°C, V Ga is not the acceptor responsible for the p-type conduction. © 2002 American Institute of Physics.published_or_final_versio

    The early bee catches the flower - circadian rhythmicity influences learning performance in honey bees, Apis mellifera

    Get PDF
    Circadian rhythmicity plays an important role for many aspects of honey bees’ lives. However, the question whether it also affects learning and memory remained unanswered. To address this question, we studied the effect of circadian timing on olfactory learning and memory in honey bees Apis mellifera using the olfactory conditioning of the proboscis extension reflex paradigm. Bees were differentially conditioned to odours and tested for their odour learning at four different “Zeitgeber” time points. We show that learning behaviour is influenced by circadian timing. Honey bees perform best in the morning compared to the other times of day. Additionally, we found influences of the light condition bees were trained at on the olfactory learning. This circadian-mediated learning is independent from feeding times bees were entrained to, indicating an inherited and not acquired mechanism. We hypothesise that a co-evolutionary mechanism between the honey bee as a pollinator and plants might be the driving force for the evolution of the time-dependent learning abilities of bees

    A Fear-Inducing Odor Alters PER2 and c-Fos Expression in Brain Regions Involved in Fear Memory

    Get PDF
    Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus

    Influence of Fe Doping Concentration on Some Properties of Semi-Insulating InP

    No full text
    Properties of Fe-doped semi-insulating (SI) InP with different iron concentrations are studied by using Hall effect, current-voltage (I-V), photoluminescence spectroscopy (PL) and photocurrent spectroscopy (PC) measurements. I-V characteristics of SI InP strongly depend on Fe doping concentration. Fe doping concentration also influences optical properties and defective formation in as-grown SI InP. Band-gap narrowing phenomenon and defects in Fe doped SI InP are studied using PI and PC
    • 

    corecore