7,510 research outputs found

    An exact representation of the fermion dynamics in terms of Poisson processes and its connection with Monte Carlo algorithms

    Full text link
    We present a simple derivation of a Feynman-Kac type formula to study fermionic systems. In this approach the real time or the imaginary time dynamics is expressed in terms of the evolution of a collection of Poisson processes. A computer implementation of this formula leads to a family of algorithms parametrized by the values of the jump rates of the Poisson processes. From these an optimal algorithm can be chosen which coincides with the Green Function Monte Carlo method in the limit when the latter becomes exact.Comment: 4 pages, 1 PostScript figure, REVTe

    "All on short" prosthetic-implant supported rehabilitations

    Get PDF
    Objectives. Short implants are increasing their popularity among clinicians who want to fulfill the constant demanding of fixed prosthetic solutions in edentulous jaws. The aim of this report was to propose a new possibility to project and realize an occlusal guided implant cross-arch prosthesis supported by ultra-short implants, describing it presented an edentulous mandible case report. Methods. A 61-year-old, Caucasian, female patient who attended the dental clinic of the University of L’Aquila presented with edentulous posterior inferior jaw and periodontitis and periimplantitis processes in the anterior mandible. The remaining tooth and the affected implant were removed. Six 4-mm-long implants were placed to support a cross-arch metal-resin prosthesis. Results. At 1-year follow-up clinical and radiological assessment showed a good osseointegration of the fixtures and the patient was satisfied with the prosthesis solution. Conclusion. The method, even if it requires further validation, seems to be a valid aid in solving lower edentulous clinical cases, and appears less complex and with more indications of other proposals presented in the current clinical literature. Our case report differs from the current technique All-on-Four, which uses four implants in the mandible to support overdenture prosthesis, assuring a very promising clinical resul

    Polarization Independent Unidirectional Scattering with Turnstile Nanoantennas

    Get PDF
    We study the scattering behavior of a dielectric cross-dipole nanoantenna in the near-infrared spectral range when it is excited by a circular polarized plane wave. We theoretically demonstrate, for optimized geometrical parameters of the proposed turnstile structure, the possibility to simultaneously obtain a unidirectional scattering and a specific circular polarization of the scattered field. Our results open new functionalities for metamaterials and optical nanoantennas

    Resonant, broadband and highly efficient optical frequency conversion in semiconductor nanowire gratings at visible and UV wavelengths

    Full text link
    Using a hydrodynamic approach we examine bulk- and surface-induced second and third harmonic generation from semiconductor nanowire gratings having a resonant nonlinearity in the absorption region. We demonstrate resonant, broadband and highly efficient optical frequency conversion: contrary to conventional wisdom, we show that harmonic generation can take full advantage of resonant nonlinearities in a spectral range where nonlinear optical coefficients are boosted well beyond what is achievable in the transparent, long-wavelength, non-resonant regime. Using femtosecond pulses with approximately 500 MW/cm2 peak power density, we predict third harmonic conversion efficiencies of approximately 1% in a silicon nanowire array, at nearly any desired UV or visible wavelength, including the range of negative dielectric constant. We also predict surface second harmonic conversion efficiencies of order 0.01%, depending on the electronic effective mass, bistable behavior of the signals as a result of a reshaped resonance, and the onset fifth order nonlinear effects. These remarkable findings, arising from the combined effects of nonlinear resonance dispersion, field localization, and phase-locking, could significantly extend the operational spectral bandwidth of silicon photonics, and strongly suggest that neither linear absorption nor skin depth should be motivating factors to exclude either semiconductors or metals from the list of useful or practical nonlinear materials in any spectral range.Comment: 12 pages, 4 figure

    Comment on "Why quantum mechanics cannot be formulated as a Markov process"

    Get PDF
    In the paper with the above title, D. T. Gillespie [Phys. Rev. A 49, 1607, (1994)] claims that the theory of Markov stochastic processes cannot provide an adequate mathematical framework for quantum mechanics. In conjunction with the specific quantum dynamics considered there, we give a general analysis of the associated dichotomic jump processes. If we assume that Gillespie's "measurement probabilities" \it are \rm the transition probabilities of a stochastic process, then the process must have an invariant (time independent) probability measure. Alternatively, if we demand the probability measure of the process to follow the quantally implemented (via the Born statistical postulate) evolution, then we arrive at the jump process which \it can \rm be interpreted as a Markov process if restricted to a suitable duration time. However, there is no corresponding Markov process consistent with the Z2Z_2 event space assumption, if we require its existence for all times tR+t\in R_+.Comment: Latex file, resubm. to Phys. Rev.

    Model of Centauro and strangelet production in heavy ion collisions

    Get PDF
    We discuss the phenomenological model of Centauro event production in relativistic nucleus-nucleus collisions. This model makes quantitative predictions for kinematic observables, baryon number and mass of the Centauro fireball and its decay products. Centauros decay mainly to nucleons, strange hyperons and possibly strangelets. Simulations of Centauro events for the CASTOR detector in Pb-Pb collisions at LHC energies are performed. The signatures of these events are discussed in detail.Comment: 19 pages, LaTeX+revtex4, 14 eps-figures and 3 table

    Phase-change chalcogenide glass metamaterial

    Full text link
    Combining metamaterials with functional media brings a new dimension to their performance. Here we demonstrate substantial resonance frequency tuning in a photonic metamaterial hybridized with an electrically/optically switchable chalcogenide glass. The transition between amorphous and crystalline forms brings about a 10% shift in the near-infrared resonance wavelength of an asymmetric split-ring array, providing transmission modulation functionality with a contrast ratio of 4:1 in a device of sub-wavelength thickness.Comment: 3 pages, 3 figure

    Seismic Vulnerability and Risk Assessment of Historic Constructions: The Case of Masonry and Adobe Churches in Italy and Chile

    Get PDF
    Nowadays, disasters in seismic-prone areas such as Italy and Chile, continue to cause dramatic human and economic consequences and affecting, among others, very ancient and historical churches, due to their high seismic vulnerability and probably due to the lack of risk management plans for the conservation of cultural property. This paper focuses on rapid seismic risk assessment by applying two simplified methods, based on expert judgement and observed damage, in old masonry churches, which aim to identify the most vulnerable elements and correlated threats that would act as site effects under the seismic action, for establishing intervention priority lists and for planning preventive conservation projects. The case studies are: the church of Sant’Agostino, built in stone masonry and located in Matera, an area with moderate seismicity in southern Italy; the church of San Francisco de Chiu Chiu, built in adobe and located in Calama, an area with average seismicity in the Andean northern Chile; and the church of San Francisco Barón, built in adobe and brick masonry, and located in Valparaíso, an area with high seismicity on the central coast of Chile

    Scaling Bounded Model Checking By Transforming Programs With Arrays

    Full text link
    Bounded Model Checking is one the most successful techniques for finding bugs in program. However, model checkers are resource hungry and are often unable to verify programs with loops iterating over large arrays.We present a transformation that enables bounded model checkers to verify a certain class of array properties. Our technique transforms an array-manipulating (ANSI-C) program to an array-free and loop-free (ANSI-C) program thereby reducing the resource requirements of a model checker significantly. Model checking of the transformed program using an off-the-shelf bounded model checker simulates the loop iterations efficiently. Thus, our transformed program is a sound abstraction of the original program and is also precise in a large number of cases - we formally characterize the class of programs for which it is guaranteed to be precise. We demonstrate the applicability and usefulness of our technique on both industry code as well as academic benchmarks

    Impossibility of spontaneously breaking local symmetries and the sign problem

    Full text link
    Elitzur's theorem stating the impossibility of spontaneous breaking of local symmetries in a gauge theory is reexamined. The existing proofs of this theorem rely on gauge invariance as well as positivity of the weight in the Euclidean partition function. We examine the validity of Elitzur's theorem in gauge theories for which the Euclidean measure of the partition function is not positive definite. We find that Elitzur's theorem does not follow from gauge invariance alone. We formulate a general criterion under which spontaneous breaking of local symmetries in a gauge theory is excluded. Finally we illustrate the results in an exactly solvable two dimensional abelian gauge theory.Comment: Latex 6 page
    corecore