60,009 research outputs found

    Negative Specific Heat in a Quasi-2D Generalized Vorticity Model

    Full text link
    Negative specific heat is a dramatic phenomenon where processes decrease in temperature when adding energy. It has been observed in gravo-thermal collapse of globular clusters. We now report finding this phenomenon in bundles of nearly parallel, periodic, single-sign generalized vortex filaments in the electron magnetohydrodynamic (EMH) model for the unbounded plane under strong magnetic confinement. We derive the specific heat using a steepest descent method and a mean field property. Our derivations show that as temperature increases, the overall size of the system increases exponentially and the energy drops. The implication of negative specific heat is a runaway reaction, resulting in a collapsing inner core surrounded by an expanding halo of filaments.Comment: 12 pages, 3 figures; updated with revision

    Crystalline silicates as a probe of disk formation history

    Full text link
    We present a new perspective on the crystallinity of dust in protoplanetary disks. The dominant crystallization by thermal annealing happens in the very early phases of disk formation and evolution. Both the disk properties and the level of crystallinity are thereby directly linked to the properties of the molecular cloud core from which the star+disk system was formed. We show that, under the assumption of single star formation, rapidly rotating clouds produce disks which, after the main infall phase (i.e. in the optically revealed class II phase), are rather massive and have a high accretion rate but low crystallinity. Slowly rotating clouds, on the other hand, produce less massive disks with lower accretion rate, but high levels of crystallinity. Cloud fragmentation and the formation of multiple stars complicates the problem and necessitates further study. The underlying physics of the model is insufficiently understood to provide the precise relationship between crystallinity, disk mass and accretion rate. But the fact that with `standard' input physics the model produces disks which, in comparison to observations, appear to have either too high levels of crystallinity or too high disk masses, demonstrates that the comparison of these models to observations can place strong contraints on the disk physics. The question to ask is not why some sources are so crystalline, but why some other sources have such a low level of crystallinity.Comment: Accepted for publication in ApJ

    Two-player quantum pseudo-telepathy based on recent all-versus-nothing violations of local realism

    Full text link
    We introduce two two-player quantum pseudo-telepathy games based on two recently proposed all-versus-nothing (AVN) proofs of Bell's theorem [A. Cabello, Phys. Rev. Lett. 95, 210401 (2005); Phys. Rev. A 72, 050101(R) (2005)]. These games prove that Broadbent and Methot's claim that these AVN proofs do not rule out local-hidden-variable theories in which it is possible to exchange unlimited information inside the same light-cone (quant-ph/0511047) is incorrect.Comment: REVTeX4, 5 page

    Transfer of Nonclassical Properties from A Microscopic Superposition to Macroscopic Thermal States in The High Temperature Limit

    Get PDF
    We present several examples where prominent quantum properties are transferred from a microscopic superposition to thermal states at high temperatures. Our work is motivated by an analogy of Schrodinger's cat paradox, where the state corresponding to the virtual cat is a mixed thermal state with a large average photon number. Remarkably, quantum entanglement can be produced between thermal states with nearly the maximum Bell-inequality violation even when the temperatures of both modes approach infinity.Comment: minor corrections, acknowledgments added, Phys.Rev.Lett., in pres

    Statistical interaction modeling of bovine herd behaviors

    Get PDF
    While there has been interest in modeling the group behavior of herds or flocks, much of this work has focused on simulating their collective spatial motion patterns which have not accounted for individuality in the herd and instead assume a homogenized role for all members or sub-groups of the herd. Animal behavior experts have noted that domestic animals exhibit behaviors that are indicative of social hierarchy: leader/follower type behaviors are present as well as dominance and subordination, aggression and rank order, and specific social affiliations may also exist. Both wild and domestic cattle are social species, and group behaviors are likely to be influenced by the expression of specific social interactions. In this paper, Global Positioning System coordinate fixes gathered from a herd of beef cows tracked in open fields over several days at a time are utilized to learn a model that focuses on the interactions within the herd as well as its overall movement. Using these data in this way explores the validity of existing group behavior models against actual herding behaviors. Domain knowledge, location geography and human observations, are utilized to explain the causes of these deviations from this idealized behavior

    Do Rotations Beyond the Cosmological Horizon Affect the Local Inertial Frame?

    Full text link
    If perturbations beyond the horizon have the velocities prescribed everywhere then the dragging of inertial frames near the origin is suppressed by an exponential factor. However if perturbations are prescribed in terms of their angular momenta there is no such suppression. We resolve this paradox and in doing so give new explicit results on the dragging of inertial frames in closed, flat and open universe with and without a cosmological constant.Comment: 12 page

    Visual Search for Galaxies near the Northern Crossing of the Supergalactic plane by the Milky Way

    Get PDF
    We have visually examined twelve Palomar red Plates for galaxies at low Galactic latitude b, where the Supergalactic Plane (SGP) is crossed by the Galactic Plane (GP), at Galactic longitude l ~135 degrees. The catalogue consists of 2575 galaxy candidates, of which 462 have major axis diameters d >= 0.8 arc min (uncorrected for extinction). Galaxy candidates can be identified down to |b| ~ 0 degrees. One of our galaxy candidates (J24 = Dwingeloo 1) has recently been discovered independently in 21cm by Kraan-Korteweg et al. (1994) as a nearby galaxy. Comparisons with the structures seen in the IRAS and UGC catalogues are made. We compare the success rate of identifying galaxies using the IRAS Point Source Catalogue under different colour selection criteria. The criteria that require both the 60 micron and 100 micron fluxes to be of high quality, have the highest probability of selecting a galaxy (with d >= 0.6 arc min), but at the expense of selecting a smaller number of galaxies in total.Comment: uuencoded compressed postscript, without figures. The figures are available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    Equilibrium fluctuation theorems compatible with anomalous response

    Full text link
    Previously, we have derived a generalization of the canonical fluctuation relation between heat capacity and energy fluctuations C=β2<δU2>C=\beta^{2}<\delta U^{2}>, which is able to describe the existence of macrostates with negative heat capacities C<0C<0. In this work, we extend our previous results for an equilibrium situation with several control parameters to account for the existence of states with anomalous values in other response functions. Our analysis leads to the derivation of three different equilibrium fluctuation theorems: the \textit{fundamental and the complementary fluctuation theorems}, which represent the generalization of two fluctuation identities already obtained in previous works, and the \textit{associated fluctuation theorem}, a result that has no counterpart in the framework of Boltzmann-Gibbs distributions. These results are applied to study the anomalous susceptibility of a ferromagnetic system, in particular, the case of 2D Ising model.Comment: Extended version of the paper published in JSTA

    Thermodynamic fluctuation relation for temperature and energy

    Full text link
    The present work extends the well-known thermodynamic relation C=β2<δE2>C=\beta ^{2}< \delta {E^{2}}> for the canonical ensemble. We start from the general situation of the thermodynamic equilibrium between a large but finite system of interest and a generalized thermostat, which we define in the course of the paper. The resulting identity =1+<δE2>2S(E)/E2 =1+< \delta {E^{2}}% > \partial ^{2}S(E) /\partial {E^{2}} can account for thermodynamic states with a negative heat capacity C<0C<0; at the same time, it represents a thermodynamic fluctuation relation that imposes some restrictions on the determination of the microcanonical caloric curve β(E)=S(E)/E\beta (E) =\partial S(E) /\partial E. Finally, we comment briefly on the implications of the present result for the development of new Monte Carlo methods and an apparent analogy with quantum mechanics.Comment: Version accepted for publication in J. Phys. A: Math and The
    corecore