33 research outputs found

    Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems

    Get PDF
    PEGylated and non-PEGylated ORMOSIL nanoparticles prepared by microemulsion condensation of vinyltriethoxy-silane (VTES) were investigated in detail for their micro-structure and ability to deliver photoactive agents. With respect to pure silica nanoparticles, organic modification substantially changes the microstructure and the surface properties. This in turn leads to a modulation of both the photophysical properties of embedded photosensitizers and the interaction of the nanoparticles with biological entities such as serum proteins. The flexibility of the synthetic procedure allows the rapid preparation and screening of multifunctional nanosystems for photodynamic therapy (PDT). Selective targeting of model cancer cells was tested by using folate, an integrin specific RGD peptide and anti-EGFR antibodies. Data suggest the interference of the stealth-conferring layer (PEG) with small targeting agents, but not with bulky antibodies. Moreover, we showed that selective photokilling of tumour cells may be limited even in the case of efficient targeting because of intrinsic transport limitations of active cellular uptake mechanisms or suboptimum localization

    Cell proliferation and cell cycle alterations in oesophageal p53-mutated cancer cells treated with cisplatin combined with photodynamic therapy.

    No full text
    OBJECTIVES: The major goal of anti-cancer therapies is selective destruction of tumour cells with minimum side effects on normal cells. Towards this aim, combination of different therapeutic modalities has been evaluated for improving control of neoplastic diseases and quality of life for the patient. Photodynamic therapy (PDT) is a procedure for treatment of various types of cancer, but its combination with other established treatments has not been evaluated in detail. We have used KYSE-510 cells from a human oesophageal carcinoma as an in vitro model to investigate whether cisplatin (CDDP) could be combined with PDT to increase cell death with respect to single treatments. MATERIALS AND METHODS: p53-mutated KYSE-510 cells were treated with CDDP alone or in combination with PDT. Analyses of cell viability, cell cycle progression and apoptosis induction were carried out at specific times after treatments. RESULTS: Decrease in cell viability, cell cycle arrest at the G(2)/M- and S-phases boundary, and apoptosis induction were observed after single and combined treatments. CONCLUSIONS: Our results show that low CDDP doses (0.25-1 microm) induce cell mortality and cell cycle perturbation, which were more evident when given in combination with PDT, but in contrast to work of other authors no synergistic activity was found. Apoptosis occurred via intrinsic pathways in treated cells, although it did not represent the predominant mode of cell death

    Cell proliferation and cell cycle alterations in oesophageal p53-mutated cancer cells treated with cisplatin in combination with photodynamic therapy.

    No full text
    OBJECTIVES: The major goal of anti-cancer therapies is selective destruction of tumour cells with minimum side effects on normal cells. Towards this aim, combination of different therapeutic modalities has been evaluated for improving control of neoplastic diseases and quality of life for the patient. Photodynamic therapy (PDT) is a procedure for treatment of various types of cancer, but its combination with other established treatments has not been evaluated in detail. We have used KYSE-510 cells from a human oesophageal carcinoma as an in vitro model to investigate whether cisplatin (CDDP) could be combined with PDT to increase cell death with respect to single treatments. MATERIALS AND METHODS: p53-mutated KYSE-510 cells were treated with CDDP alone or in combination with PDT. Analyses of cell viability, cell cycle progression and apoptosis induction were carried out at specific times after treatments. RESULTS: Decrease in cell viability, cell cycle arrest at the G(2)/M- and S-phases boundary, and apoptosis induction were observed after single and combined treatments. CONCLUSIONS: Our results show that low CDDP doses (0.25-1 microm) induce cell mortality and cell cycle perturbation, which were more evident when given in combination with PDT, but in contrast to work of other authors no synergistic activity was found. Apoptosis occurred via intrinsic pathways in treated cells, although it did not represent the predominant mode of cell death
    corecore