200 research outputs found

    Characterization of Small Metallic Clusters by Electron Energy Loss Spectroscopy

    Get PDF
    Small spherical tin and gallium clusters (diameters in the range 2 to 80 nm), prepared with a liquid metal ion source, were analysed in a scanning transmission electron microscope (STEM) by electron energy loss spectroscopy (EELS). Both volume and surface plasmon excitations were investigated and their dependence on the cluster size interpreted by classical and quantum mechanical models. A blue shift of the volume plasmon energy with decreasing radius R of the cluster was clearly detected. The full width at half maximum (FWHM) of the peak, related to the damping of the volume plasmon excitation, showed a dependence in 1/R. The reported variation of the surface plasmon energy with R was consistent with earlier predictions or experiments

    Near Edge Fine Structures on Electron Energy Loss Spectroscopy Core Loss Edges

    Get PDF
    Core edges recorded in Electron Energy Loss Spectroscopy (EELS) display a large variety of profiles. We have investigated several specific aspects concerning Energy Loss Near Edge Structures (ELNES) and emphasize the interest in a careful edge shape analysis to obtain refined microanalytical information, such as local symmetry. After indicating the general impact of EELS fine structures as compared to EDX and Auger spectroscopies we discuss the instrumental conditions required for recording satisfactory spectra and consider the theoretical problems which are involved in data interpretation. The major portion of this paper presents results for selected K, L23, M45 and N45 core excitations in compounds (mainly oxides). In each case the phenomena governing the ELNES distribution are pointed out. In conclusion, we summarize the potential of a careful analysis of ELNES for studying the chemical state of the absorbing atom and the symmetry of it s first coordination shell (molecular description) or longer range effects (projections of solid state density of states as seen by the ejected atom)

    Electron Energy Loss Spectroscopy Measurement of the Optical Gaps on Individual Boron Nitride Single-Walled and Multiwalled Nanotubes

    Get PDF
    Spatially resolved electron energy loss spectroscopy experiments have been performed in an electron microscope on several individual boron nitride (BN) single-, double-, and triple-walled nanotubes, whose diameters and number of shells have been carefully measured. In the low-loss region (from 2 to 50 eV) the spectra have been analyzed within the framework of the continuum dielectric theory, leading to the conclusion of a weak influence of out-of-plane contribution to the dielectric response of the tubes. The gap has been measured to be independent of the nanotubes geometry, and close to the in-plane gap value of hexagonal BN (5.8±0.2¿¿eV)

    Conductivity and Atomic Structure of Isolated Multiwalled Carbon Nanotubes

    Full text link
    We report associated high resolution transmission electron microscopy (HRTEM) and transport measurements on a series of isolated multiwalled carbon nanotubes. HRTEM observations, by revealing relevant structural features of the tubes, shed some light on the variety of observed transport behaviors, from semiconducting to quasi-metallic type. Non Ohmic behavior is observed for certain samples which exhibit "bamboo like" structural defects. The resistance of the most conducting sample, measured down to 20 mK, exhibits a pronounced maximum at 0.6 K and strong positive magnetoresistance.Comment: 4 pages, 4 eps figure

    Co-doped (La,Sr)TiO3-d: a high-Curie temperature diluted magnetic system with large spin-polarization

    Get PDF
    We report on tunneling magnetoresistance (TMR) experiments that demonstrate the existence of a significant spin polarization in Co-doped (La,Sr)TiO3-d (Co-LSTO), a ferromagnetic diluted magnetic oxide system (DMOS) with high Curie temperature. These TMR experiments have been performed on magnetic tunnel junctions associating Co-LSTO and Co electrodes. Extensive structural analysis of Co-LSTO combining high-resolution transmission electron microscopy and Auger electron spectroscopy excluded the presence of Co clusters in the Co-LSTO layer and thus, the measured ferromagnetism and high spin polarization are intrinsic properties of this DMOS. Our results argue for the DMOS approach with complex oxide materials in spintronics

    Instability driven fragmentation of nanoscale fractal islands

    Full text link
    Formation and evolution of fragmentation instabilities in fractal islands, obtained by deposition of silver clusters on graphite, are studied. The fragmentation dynamics and subsequent relaxation to the equilibrium shapes are controlled by the deposition conditions and cluster composition. Sharing common features with other materials' breakup phenomena, the fragmentation instability is governed by the length-to-width ratio of the fractal arms.Comment: 5 pages, 3 figures, Physical Review Letters in pres
    corecore