159 research outputs found

    Magnetic Inhomogeneity and Magnetotransport in Electron-Doped Ca(1-x)La(x)MnO(3) (0<=x<=0.10)

    Full text link
    The dc magnetization (M) and electrical resistivity (\rho) as functions of magnetic field and temperature are reported for a series of lightly electron dopedCa(1-x)La(x)MnO(3) (0<=x<=0.10) specimens for which magnetization [Phys. Rev. B {\bf 61}, 14319 (2000)] and scattering studies [Phys. Rev. B {\bf 68}, 134440 (2003)] indicate an inhomogeneous magnetic ground state composed of ferromagnetic (FM) droplets embedded in a G-type antiferromagnetic matrix. A change in the magnetic behavior near x=0.02 has been suggested to be the signature of a crossover to a long-ranged spin-canted phase. The data reported here provide further detail about this crossover in the magnetization, and additional insight into the origin of this phenomenon through its manifestation in the magnetotransport. In the paramagnetic phase (T>=125 K) we find a magnetoresistance =-C(M/M_S)^2 (M_S is the low-T saturation magnetization), as observed in many manganites in the ferromagnetic (FM), colossal magnetoresistance (CMR) region of the phase diagram, but with a value of C that is two orders of magnitude smaller than observed for CMR materials. The doping behavior C(x) follows that of M_S(x), indicating that electronic inhomogeneity associated with FM fluctuations occurs well above the magnetic ordering transition.Comment: 7 pp., 10 Fig.s, submitted to PR

    Coherent Quantum Dynamics of a Superconducting Flux Qubit

    Full text link
    We have observed coherent time evolution between two quantum states of a superconducting flux qubit comprising three Josephson junctions in a loop. The superposition of the two states carrying opposite macroscopic persistent currents is manipulated by resonant microwave pulses. Readout by means of switching-event measurement with an attached superconducting quantum interference device revealed quantum-state oscillations with high fidelity. Under strong microwave driving it was possible to induce hundreds of coherent oscillations. Pulsed operations on this first sample yielded a relaxation time of 900 nanoseconds and a free-induction dephasing time of 20 nanoseconds. These results are promising for future solid-state quantum computing.Comment: submitted 2 December 2002; accepted 4 February 200

    Detection of a persistent-current qubit by resonant activation

    Full text link
    We present the implementation of a new scheme to detect the quantum state of a persistent-current qubit. It relies on the dependency of the measuring Superconducting Quantum Interference Device (SQUID) plasma frequency on the qubit state, which we detect by resonant activation. With a measurement pulse of only 5ns, we observed Rabi oscillations with high visibility (65%).Comment: 4 pages, 4 figures, submitted to PRB Rapid Co

    Adiabatic Landau-Zener-St\"uckelberg transition with or without dissipation in low spin molecular system V15

    Full text link
    The spin one half molecular system V15 shows no barrier against spin reversal. This makes possible direct phonon activation between the two levels. By tuning the field sweeping rate and the thermal coupling between sample and thermal reservoir we have control over the phonon-bottleneck phenomena previously reported in this system. We demonstrate adiabatic motion of molecule spins in time dependent magnetic fields and with different thermal coupling to the cryostat bath. We also discuss the origin of the zero-field tunneling splitting for a half-integer spin.Comment: to appear in Phys. Rev. B - Rapid Communication

    An RF-Driven Josephson Bifurcation Amplifier for Quantum Measurements

    Full text link
    We have constructed a new type of amplifier whose primary purpose is the readout of superconducting quantum bits. It is based on the transition of an RF-driven Josephson junction between two distinct oscillation states near a dynamical bifurcation point. The main advantages of this new amplifier are speed, high-sensitivity, low back-action, and the absence of on-chip dissipation. Pulsed microwave reflection measurements on nanofabricated Al junctions show that actual devices attain the performance predicted by theory.Comment: 5 Figure

    Spin transition in Gd3_3N@C80_{80}, detected by low-temperature on-chip SQUID technique

    Get PDF
    We present a magnetic study of the Gd3_3N@C80_{80} molecule, consisting of a Gd-trimer via a Nitrogen atom, encapsulated in a C80_{80} cage. This molecular system can be an efficient contrast agent for Magnetic Resonance Imaging (MRI) applications. We used a low-temperature technique able to detect small magnetic signals by placing the sample in the vicinity of an on-chip SQUID. The technique implemented at NHMFL has the particularity to operate in high magnetic fields of up to 7 T. The Gd3_3N@C80_{80} shows a paramagnetic behavior and we find a spin transition of the Gd3_3N structure at 1.2 K. We perform quantum mechanical simulations, which indicate that one of the Gd ions changes from a 8S7/2^8S_{7/2} state (L=0,S=7/2L=0, S=7/2) to a 7F6^7F_{6} state (L=S=3,J=6L=S=3, J=6), likely due to a charge transfer between the C80_{80} cage and the ion

    Relaxation and Dephasing in a Flux-qubit

    Full text link
    We report detailed measurements of the relaxation and dephasing time in a flux-qubit measured by a switching DC SQUID. We studied their dependence on the two important circuit bias parameters: the externally applied magnetic flux and the bias current through the SQUID in two samples. We demonstrate two complementary strategies to protect the qubit from these decoherence sources. One consists in biasing the qubit so that its resonance frequency is stationary with respect to the control parameters ({\it optimal point}) ; the second consists in {\it decoupling} the qubit from current noise by chosing a proper bias current through the SQUID. At the decoupled optimal point, we measured long spin-echo decay times of up to 4μs4 \mu s.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter

    Dephasing of a superconducting qubit induced by photon noise

    Full text link
    We have studied the dephasing of a superconducting flux-qubit coupled to a DC-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of such a controllable and well-characterized environment on the qubit coherence. We can quantitatively account for our data with a simple model in which thermal fluctuations of the photon number in the oscillator are the limiting factor. In particular, we observe a strong reduction of the dephasing rate whenever the coupling is tuned to zero. At the optimal point we find a large spin-echo decay time of 4μs4 \mu s.Comment: New version of earlier paper arXiv/0507290 after in-depth rewritin
    • …
    corecore