104 research outputs found

    HER2 expression and efficacy of dose-dense anthracycline-containing adjuvant chemotherapy in breast cancer patients

    Get PDF
    No data are available on the role of HER2 overexpression in predicting the efficacy of dose-dense anthracycline-containing adjuvant chemotherapy in breast cancer patients. We retrospectively evaluated this role in patients enrolled in a phase III study comparing standard FEC21 (5-fluorouracil, epirubicin, and cyclophosphamide, administered every 3 weeks) vs dose-dense FEC14 (the same regimen repeated every 2 weeks). HER2 status was determined for 731 of 1214 patients. Statistical analyses were performed to test for interaction between treatment and HER2 status with respect to event-free survival (EFS) and overall survival (OS); EFS and OS were compared within each HER2 subgroup and within each treatment arm. Median follow-up was 6.7 years. Among FEC21-treated patients, both EFS (HR=2.07; 95% CI 1.27–3.38) and OS (HR=2.47; 95% CI 1.34–4.57) were significantly worse in HER2 + patients than in HER2 − patients. Among FEC14-treated patients, differences in either EFS (HR=1.21; 95% CI 0.65–2.24) or OS (HR=1.85; 95% CI 0.88–3.89) between HER2 + and HER2 − patients were not statistically significant. Interaction analysis suggested that the use of dose-dense FEC14 might remove the negative prognostic effect of HER2 overexpression on EFS and OS. Our data suggest a potential role of HER-2 overexpression in predicting the efficacy of dose-dense epirubicin-containing chemotherapy and the need to confirm this hypothesis in future prospective studies

    A phase II study of vinflunine in bladder cancer patients progressing after first-line platinum-containing regimen

    Get PDF
    A multicentre phase II trial to determine the efficacy of vinflunine as second-line therapy in patients with advanced transitional cell carcinoma (TCC) of the bladder; secondary objectives were to assess duration of response, progression-free survival (PFS) and overall survival (OS), and to evaluate the toxicity associated with this treatment. Patients had tumours that failed or progressed after first-line platinum-containing regimens for advanced or metastatic disease, or had progressive disease after platinum-containing chemotherapy given with adjuvant or neoadjuvant intent. Response and adverse events were assessed according to WHO criteria and NCI-CTC (version 2), respectively. Out of 51 patients treated with 320 mg m−2 of vinflunine, nine patients responded to the therapy yielding an overall response rate of 18% (95% CI: 8.4–30.9%), and 67% (95%CI: 52.1–79.3%) achieved disease control (PR+SD). Of note, responses were seen in patients with relatively poor prognostic factors such as a short (<12 months) interval from prior platinum therapy (19%, including an 11% response rate in those progressing <3 months after platinum treatment), prior treatment for metastatic disease (24%), prior treatment with vinca alkaloids (14%) and visceral involvement (20%). The median duration of response was 9.1 months (95% CI: 4.2–15.0) and the median PFS was 3.0 months (95% CI: 2.4–3.8). The median OS was 6.6 months (95% CI: 4.8–7.6). The main haematological toxicity was grade 3–4 neutropenia, observed in 67% of patients (42% of cycles). Febrile neutropenia was observed in five patients (10%) and among them two were fatal. Constipation was frequently observed (but was manageable and noncumulative) and was grade 3–4 in only 8% of patients. The incidence of grade 3 nausea and vomiting was very low (4 and 6% of patients, respectively). Neither grade 3–4 sensory neuropathy nor severe venous irritation was observed. Moreover, and of importance in this particular study population, no grade 3–4 renal function impairment was observed. Vinflunine is an active agent for the treatment of platinum-pretreated bladder cancer, and these results warrant further investigation in phase III trials, either as monotherapy or in combination with other agents as treatment of advanced/metastatic TCC of the bladder

    Treatment with interleukin-2 in malignant pleural mesothelioma: immunological and angiogenetic assessment and prognostic impact

    Get PDF
    BACKGROUND: Administration of interleukin-2 (IL-2) has shown some effects on malignant pleural mesothelioma (MPM) tumour regression. The purpose of this study was to investigate the ability of IL-2 to modify immunological effector cells and angiogenesis in MPM patients and their prognostic value. METHODS: Tumour-infiltrating lymphocytes (CD4, CD8, Foxp3), mast cells (MCs) (tryptase and chymase), microvessel count (MVC) and VEGF were determined by immunohistochemistry in two series of MPM patients: 60 patients treated with intra-pleural preoperative IL-2 and 33 patients untreated. RESULTS: Tryptase MCs, and CD8 and Foxp3 lymphocytes were significantly increased in the IL-2-treated group, whereas MVC was significantly lower in the same group. Moreover, in the IL-2-treated group, greater tryptase + MCs and greater Foxp3 lymphocytes were associated with improved and poorer clinical outcomes, respectively. Notably, when these two immunological parameters were combined, they predicted outcomes more effectively. CONCLUSIONS: This study showed that IL-2 treatment leads to a significant increase of immunological parameters, concomitantly with a reduction in vasculature, providing new insight into the cancer mechanisms mediated by IL-2. Moreover, these results suggest that tryptase-positive MCs and Foxp3 + lymphocytes predict clinical outcomes in IL-2-treated patients, highlighting the critical role of the inflammatory response in mesothelioma cancer progression. British Journal of Cancer (2009) 101, 1869-1875. doi:10.1038/sj.bjc.6605438 www.bjcancer.com (C) 2009 Cancer Research U

    Malignant mesothelioma

    Get PDF
    Malignant mesothelioma is a fatal asbestos-associated malignancy originating from the lining cells (mesothelium) of the pleural and peritoneal cavities, as well as the pericardium and the tunica vaginalis. The exact prevalence is unknown but it is estimated that mesotheliomas represent less than 1% of all cancers. Its incidence is increasing, with an expected peak in the next 10–20 years. Pleural malignant mesothelioma is the most common form of mesothelioma. Typical presenting features are those of chest pain and dyspnoea. Breathlessness due to a pleural effusion without chest pain is reported in about 30% of patients. A chest wall mass, weight loss, sweating, abdominal pain and ascites (due to peritoneal involvement) are less common presentations. Mesothelioma is directly attributable to occupational asbestos exposure with a history of exposure in over 90% of cases. There is also evidence that mesothelioma may result from both para-occupational exposure and non-occupational "environmental" exposure. Idiopathic or spontaneous mesothelioma can also occur in the absence of any exposure to asbestos, with a spontaneous rate in humans of around one per million. A combination of accurate exposure history, along with examination radiology and pathology are essential to make the diagnosis. Distinguishing malignant from benign pleural disease can be challenging. The most helpful CT findings suggesting malignant pleural disease are 1) a circumferential pleural rind, 2) nodular pleural thickening, 3) pleural thickening of > 1 cm and 4) mediastinal pleural involvement. Involvement of a multidisciplinary team is recommended to ensure prompt and appropriate management, using a framework of radiotherapy, chemotherapy, surgery and symptom palliation with end of life care. Compensation issues must also be considered. Life expectancy in malignant mesothelioma is poor, with a median survival of about one year following diagnosis

    Local therapy of cancer with free IL-2

    Get PDF
    This is a position paper about the therapeutic effects of locally applied free IL-2 in the treatment of cancer. Local therapy: IL-2 therapy of cancer was originally introduced as a systemic therapy. This therapy led to about 20% objective responses. Systemic therapy however was very toxic due to the vascular leakage syndrome. Nevertheless, this treatment was a break-through in cancer immunotherapy and stimulated some interesting questions: Supposing that the mechanism of IL-2 treatment is both proliferation and tumoricidal activity of the tumor infiltrating cells, then locally applied IL-2 should result in a much higher local IL-2 concentration than systemic IL-2 application. Consequently a greater beneficial effect could be expected after local IL-2 application (peritumoral = juxtatumoral, intratumoral, intra-arterial, intracavitary, or intratracheal = inhalation). Free IL-2: Many groups have tried to prepare a more effective IL-2 formulation than free IL-2. Examples are slow release systems, insertion of the IL-2 gene into a tumor cell causing prolonged IL-2 release. However, logistically free IL-2 is much easier to apply; hence we concentrated in this review and in most of our experiments on the use of free IL-2. Local therapy with free IL-2 may be effective against transplanted tumors in experimental animals, and against various spontaneous carcinomas, sarcomas, and melanoma in veterinary and human cancer patients. It may induce rejection of very large, metastasized tumor loads, for instance advanced clinical tumors. The effects of even a single IL-2 application may be impressive. Not each tumor or tumor type is sensitive to local IL-2 application. For instance transplanted EL4 lymphoma or TLX9 lymphoma were not sensitive in our hands. Also the extent of sensitivity differs: In Bovine Ocular Squamous Cell Carcinoma (BOSCC) often a complete regression is obtained, whereas with the Bovine Vulval Papilloma and Carcinoma Complex (BVPCC) mainly stable disease is attained. Analysis of the results of local IL-2 therapy in 288 cases of cancer in human patients shows that there were 27% Complete Regressions (CR), 23% Partial Regressions (PR), 18% Stable Disease (SD), and 32% Progressive Disease (PD). In all tumors analyzed, local IL-2 therapy was more effective than systemic IL-2 treatment. Intratumoral IL-2 applications are more effective than peritumoral application or application at a distant site. Tumor regression induced by intratumoral IL-2 application may be a fast process (requiring about a week) in the case of a highly vascular tumor since IL-2 induces vascular leakage/edema and consequently massive tumor necrosis. The latter then stimulates an immune response. In less vascular tumors or less vascular tumor sites, regression may require 9–20 months; this regression is mainly caused by a cytotoxic leukocyte reaction. Hence the disadvantageous vascular leakage syndrome complicating systemic treatment is however advantageous in local treatment, since local edema may initiate tumor necrosis. Thus the therapeutic effect of local IL-2 treatment is not primarily based on tumor immunity, but tumor immunity seems to be useful as a secondary component of the IL-2 induced local processes. If local IL-2 is combined with surgery, radiotherapy or local chemotherapy the therapeutic effect is usually greater than with either therapy alone. Hence local free IL-2 application can be recommended as an addition to standard treatment protocols. Local treatment with free IL-2 is straightforward and can readily be applied even during surgical interventions. Local IL-2 treatment is usually without serious side effects and besides minor complaints it is generally well supported. Only small quantities of IL-2 are required. Hence the therapy is relatively cheap. A single IL-2 application of 4.5 million U IL-2 costs about 70 Euros. Thus combined local treatment may offer an alternative in those circumstances when more expensive forms of treatment are not available, for instance in resource poor countries

    Calculation of venoarterial CO2 concentration difference

    No full text
    corecore