308 research outputs found

    Anxiolytic activity of pyridoindole derivatives SMe1EC2 and SMe1M2: behavioral analysis using rat model

    Get PDF
    Anxiety and mood disorders have become very significant affections in the last decades. According to WHO at least one mental disease occurred per year in 27% of EU inhabitants (more than 82 mil. people). It is estimated that by 2020, depression will be the main cause of morbidity in the developed countries. These circumstances call for research for new prospective drugs with anxiolytic and antidepressive properties exhibiting no toxicity and withdrawal effect and possessing beneficial properties, like antioxidant and/or neuroprotective effects. The aim of this study was to obtain information about psychopharmacological properties of pyridoindole derivatives SMe1EC2 and SMe1M2, using non-invasive behavioral methods in rats

    A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    Get PDF
    The entire substrate translocation pathway in the human GABA transporter (GAT-1) was explored for the endogenous substrate GABA and the anti-convulsive drug tiagabine. Following a steered molecular dynamics (SMD) approach, in which a harmonic restraining potential is applied to the ligand, dissociation and re-association of ligands were simulated revealing events leading to substrate (GABA) translocation and inhibitor (tiagabine) mechanism of action. We succeeded in turning the transporter from the outward facing occluded to the open-to-out conformation, and also to reorient the transporter to the open-to-in conformation. The simulations are validated by literature data and provide a substrate pathway fingerprint in terms of which, how, and in which sequence specific residues are interacted with. They reveal the essential functional roles of specific residues, e.g. the role of charged residues in the extracellular vestibule including two lysines (K76 (TM1) and K448 (TM10)) and a TM6-triad (D281, E283, and D287) in attracting and relocating substrates towards the secondary/interim substrate-binding site (S2). Likewise, E101 is highlighted as essential for the relocation of the substrate from the primary substrate-binding site (S1) towards the cytoplasm

    The Influence of Coastal Access on Isotope Variation in Icelandic Arctic Foxes

    Get PDF
    To quantify the ecological effects of predator populations, it is important to evaluate how population-level specializations are dictated by intra- versus inter-individual dietary variation. Coastal habitats contain prey from the terrestrial biome, the marine biome and prey confined to the coastal region. Such habitats have therefore been suggested to better support predator populations compared to habitats without coastal access. We used stable isotope data on a small generalist predator, the arctic fox, to infer dietary strategies between adult and juvenile individuals with and without coastal access on Iceland. Our results suggest that foxes in coastal habitats exhibited a broader isotope niche breadth compared to foxes in inland habitats. This broader niche was related to a greater diversity of individual strategies rather than to a uniform increase in individual niche breadth or by individuals retaining their specialization but increasing their niche differentiation. Juveniles in coastal habitats exhibited a narrower isotope niche breadth compared to both adults and juveniles in inland habitats, and juveniles in inland habitats inhabited a lower proportion of their total isotope niche compared to adults and juveniles from coastal habitats. Juveniles in both habitats exhibited lower intra-individual variation compared to adults. Based on these results, we suggest that foxes in both habitats were highly selective with respect to the resources they used to feed offspring, but that foxes in coastal habitats preferentially utilized marine resources for this purpose. We stress that coastal habitats should be regarded as high priority areas for conservation of generalist predators as they appear to offer a wide variety of dietary options that allow for greater flexibility in dietary strategies

    Anaesthesia and PET of the Brain

    Get PDF
    Although drugs have been used to administer general anaesthesia for more than a century and a half, relatively little was known until recently about the molecular and cellular effects of the anaesthetic agents and the neurobiology of anaesthesia. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have played a valuable role in improving this knowledge. PET studies using 11C-flumazenil binding have been used to demonstrate that the molecular action of some, but not all, of the current anaesthetic agents is mediated via the GABAA receptor. Using different tracers labelled with 18F, 11C and 15O, PET studies have shown the patterns of changes in cerebral metabolism and blood flow associated with different intravenous and volatile anaesthetic agents. Within classes of volatile agents, there are minor variations in patterns. More profound differences are found between classes of agents. Interestingly, all agents cause alterations in the blood flow and metabolism of the thalamus, providing strong support for the hypothesis that the anaesthetic agents interfere with consciousness by interfering with thalamocortical communication.</p

    Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding.

    No full text
    [3H]Diazepam appears to bind specifically to a single, saturable, binding site located on rat brain membranes, with an affinity constant near 3 nM at pH 7.4. Specific binding constitutes more than 90% of total binding at 0 degrees and less than 10% of total binding at 37 degrees. Arrhenius plots suggest a sharp conformational change in the diazepam receptor near 18 degrees. Mitochondrial fractions from rat kidney, liver, and lung exhibit some [3H]diazepam binding that can be displaced by nonradioactive diazepam and several other benzodiazepines. However, Ro-4864, which is almost inactive in displacing [3H]diazepam from brain membranes, is extremely potent in displacing it from kidney mitochondria. Conversely, clonazepam, the most potent inhibitor of brain binding, is an extremely weak inhibitor of kidney binding. Furthermore, diazepam binding to kidney mitochondria has an affinity constantof 40 nM, about 15 times higher than that in brain. No specific diazepam binding was detected in intestine or skeletal muscle. Thus, specific [3H]diazepam binding to membranes appears to be restricted to brain, where it is unevenly distributed: the density of diazepam receptors is about five times higher in cortex (the highest density) than in pons-meddula (lowest density). Trypsin and chymotrypsin completely abolished specific [3H]diazepambinding in brain and kidney
    corecore