791 research outputs found
On Eigenvalue spacings for the 1-D Anderson model with singular site distribution
We study eigenvalue spacings and local eigenvalue statistics for 1D lattice
Schrodinger operators with Holder regular potential, obtaining a version of
Minami's inequality and Poisson statistics for the local eigenvalue spacings.
The main additional new input are regular properties of the Furstenberg
measures and the density of states obtained in some of the author's earlier
work.Comment: 13 page
Bounds on the growth of high Sobolev norms of solutions to 2D Hartree Equations
In this paper, we consider Hartree-type equations on the two-dimensional
torus and on the plane. We prove polynomial bounds on the growth of high
Sobolev norms of solutions to these equations. The proofs of our results are
based on the adaptation to two dimensions of the techniques we previously used
to study analogous problems on , and on .Comment: 38 page
An Improved Private Mechanism for Small Databases
We study the problem of answering a workload of linear queries ,
on a database of size at most drawn from a universe
under the constraint of (approximate) differential privacy.
Nikolov, Talwar, and Zhang~\cite{NTZ} proposed an efficient mechanism that, for
any given and , answers the queries with average error that is
at most a factor polynomial in and
worse than the best possible. Here we improve on this guarantee and give a
mechanism whose competitiveness ratio is at most polynomial in and
, and has no dependence on . Our mechanism
is based on the projection mechanism of Nikolov, Talwar, and Zhang, but in
place of an ad-hoc noise distribution, we use a distribution which is in a
sense optimal for the projection mechanism, and analyze it using convex duality
and the restricted invertibility principle.Comment: To appear in ICALP 2015, Track
Growth in solvable subgroups of GL_r(Z/pZ)
Let and let be a subset of \GL_r(K) such that is
solvable. We reduce the study of the growth of $A$ under the group operation to
the nilpotent setting. Specifically we prove that either $A$ grows rapidly
(meaning $|A\cdot A\cdot A|\gg |A|^{1+\delta}$), or else there are groups $U_R$
and $S$, with $S/U_R$ nilpotent such that $A_k\cap S$ is large and
$U_R\subseteq A_k$, where $k$ is a bounded integer and $A_k = \{x_1 x_2...b x_k
: x_i \in A \cup A^{-1} \cup {1}}$. The implied constants depend only on the
rank $r$ of $\GL_r(K)$.
When combined with recent work by Pyber and Szab\'o, the main result of this
paper implies that it is possible to draw the same conclusions without
supposing that is solvable.Comment: 46 pages. This version includes revisions recommended by an anonymous
referee including, in particular, the statement of a new theorem, Theorem
On certain other sets of integers
We show that if A is a subset of {1,...,N} containing no non-trivial
three-term arithmetic progressions then |A|=O(N/ log^{3/4-o(1)} N).Comment: 29 pp. Corrected typos. Added definitions for some non-standard
notation and remarks on lower bound
Invariance of the white noise for KdV
We prove the invariance of the mean 0 white noise for the periodic KdV.
First, we show that the Besov-type space \hat{b}^s_{p, \infty}, sp <-1,
contains the support of the white noise. Then, we prove local well-posedness in
\hat{b}^s_{p, \infty} for p= 2+, s = -{1/2}+ such that sp <-1. In establishing
the local well-posedness, we use a variant of the Bourgain spaces with a
weight. This provides an analytical proof of the invariance of the white noise
under the flow of KdV obtained in Quastel-Valko.Comment: 18 pages. To appear in Comm. Math. Phy
Enhanced soliton transport in quasi-periodic lattices with short-range aperiodicity
We study linear transmission and nonlinear soliton transport through
quasi-periodic structures, which profiles are described by multiple modulation
frequencies. We show that resonant scattering at mixed-frequency resonances
limits transmission efficiency of localized wave packets, leading to radiation
and possible trapping of solitons. We obtain an explicit analytical expression
for optimal quasi-periodic lattice profiles, where additional aperiodic
modulations suppress mixed-frequency resonances, resulting in dramatic
enhancement of soliton mobility. Our results can be applied to the design of
photonic waveguide structures, and arrays of magnetic micro-traps for atomic
Bose-Einstein condensates.Comment: 4 pages, 4 figure
Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation
We consider the cubic defocusing nonlinear Schrödinger equation on the two dimensional torus. We exhibit smooth solutions for which the support of the conserved energy moves to higher Fourier modes. This behavior is quantified by the growth of higher Sobolev norms: given any δ[much less-than]1,K [much greater-than] 1, s > 1, we construct smooth initial data u 0 with ||u0||Hs , so that the corresponding time evolution u satisfies u(T)Hs[greater than]K at some time T. This growth occurs despite the Hamiltonian’s bound on ||u(t)||H1 and despite the conservation of the quantity ||u(t)||L2.
The proof contains two arguments which may be of interest beyond the particular result described above. The first is a construction of the solution’s frequency support that simplifies the system of ODE’s describing each Fourier mode’s evolution. The second is a construction of solutions to these simpler systems of ODE’s which begin near one invariant manifold and ricochet from arbitrarily small neighborhoods of an arbitrarily large number of other invariant manifolds. The techniques used here are related to but are distinct from those traditionally used to prove Arnold Diffusion in perturbations of Hamiltonian systems
The Littlewood-Gowers problem
We show that if A is a subset of Z/pZ (p a prime) of density bounded away
from 0 and 1 then the A(Z/pZ)-norm (that is the l^1-norm of the Fourier
transform) of the characterstic function of A is bounded below by an absolute
constant times (log p)^{1/2 - \epsilon} as p tends to infinity. This improves
on the exponent 1/3 in recent work of Green and Konyagin.Comment: 31 pp. Corrected typos. Updated references
Continuations of the nonlinear Schr\"odinger equation beyond the singularity
We present four continuations of the critical nonlinear \schro equation (NLS)
beyond the singularity: 1) a sub-threshold power continuation, 2) a
shrinking-hole continuation for ring-type solutions, 3) a vanishing
nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL)
continuation. Using asymptotic analysis, we explicitly calculate the limiting
solutions beyond the singularity. These calculations show that for generic
initial data that leads to a loglog collapse, the sub-threshold power limit is
a Bourgain-Wang solution, both before and after the singularity, and the
vanishing nonlinear-damping and CGL limits are a loglog solution before the
singularity, and have an infinite-velocity{\rev{expanding core}} after the
singularity. Our results suggest that all NLS continuations share the universal
feature that after the singularity time , the phase of the singular core
is only determined up to multiplication by . As a result,
interactions between post-collapse beams (filaments) become chaotic. We also
show that when the continuation model leads to a point singularity and
preserves the NLS invariance under the transformation and
, the singular core of the weak solution is symmetric
with respect to . Therefore, the sub-threshold power and
the{\rev{shrinking}}-hole continuations are symmetric with respect to ,
but continuations which are based on perturbations of the NLS equation are
generically asymmetric
- …