791 research outputs found

    On Eigenvalue spacings for the 1-D Anderson model with singular site distribution

    Full text link
    We study eigenvalue spacings and local eigenvalue statistics for 1D lattice Schrodinger operators with Holder regular potential, obtaining a version of Minami's inequality and Poisson statistics for the local eigenvalue spacings. The main additional new input are regular properties of the Furstenberg measures and the density of states obtained in some of the author's earlier work.Comment: 13 page

    Bounds on the growth of high Sobolev norms of solutions to 2D Hartree Equations

    Full text link
    In this paper, we consider Hartree-type equations on the two-dimensional torus and on the plane. We prove polynomial bounds on the growth of high Sobolev norms of solutions to these equations. The proofs of our results are based on the adaptation to two dimensions of the techniques we previously used to study analogous problems on S1S^1, and on R\mathbb{R}.Comment: 38 page

    An Improved Private Mechanism for Small Databases

    Full text link
    We study the problem of answering a workload of linear queries Q\mathcal{Q}, on a database of size at most n=o(Q)n = o(|\mathcal{Q}|) drawn from a universe U\mathcal{U} under the constraint of (approximate) differential privacy. Nikolov, Talwar, and Zhang~\cite{NTZ} proposed an efficient mechanism that, for any given Q\mathcal{Q} and nn, answers the queries with average error that is at most a factor polynomial in logQ\log |\mathcal{Q}| and logU\log |\mathcal{U}| worse than the best possible. Here we improve on this guarantee and give a mechanism whose competitiveness ratio is at most polynomial in logn\log n and logU\log |\mathcal{U}|, and has no dependence on Q|\mathcal{Q}|. Our mechanism is based on the projection mechanism of Nikolov, Talwar, and Zhang, but in place of an ad-hoc noise distribution, we use a distribution which is in a sense optimal for the projection mechanism, and analyze it using convex duality and the restricted invertibility principle.Comment: To appear in ICALP 2015, Track

    Growth in solvable subgroups of GL_r(Z/pZ)

    Get PDF
    Let K=Z/pZK=Z/pZ and let AA be a subset of \GL_r(K) such that is solvable. We reduce the study of the growth of $A$ under the group operation to the nilpotent setting. Specifically we prove that either $A$ grows rapidly (meaning $|A\cdot A\cdot A|\gg |A|^{1+\delta}$), or else there are groups $U_R$ and $S$, with $S/U_R$ nilpotent such that $A_k\cap S$ is large and $U_R\subseteq A_k$, where $k$ is a bounded integer and $A_k = \{x_1 x_2...b x_k : x_i \in A \cup A^{-1} \cup {1}}$. The implied constants depend only on the rank $r$ of $\GL_r(K)$. When combined with recent work by Pyber and Szab\'o, the main result of this paper implies that it is possible to draw the same conclusions without supposing that is solvable.Comment: 46 pages. This version includes revisions recommended by an anonymous referee including, in particular, the statement of a new theorem, Theorem

    On certain other sets of integers

    Full text link
    We show that if A is a subset of {1,...,N} containing no non-trivial three-term arithmetic progressions then |A|=O(N/ log^{3/4-o(1)} N).Comment: 29 pp. Corrected typos. Added definitions for some non-standard notation and remarks on lower bound

    Invariance of the white noise for KdV

    Get PDF
    We prove the invariance of the mean 0 white noise for the periodic KdV. First, we show that the Besov-type space \hat{b}^s_{p, \infty}, sp <-1, contains the support of the white noise. Then, we prove local well-posedness in \hat{b}^s_{p, \infty} for p= 2+, s = -{1/2}+ such that sp <-1. In establishing the local well-posedness, we use a variant of the Bourgain spaces with a weight. This provides an analytical proof of the invariance of the white noise under the flow of KdV obtained in Quastel-Valko.Comment: 18 pages. To appear in Comm. Math. Phy

    Enhanced soliton transport in quasi-periodic lattices with short-range aperiodicity

    Full text link
    We study linear transmission and nonlinear soliton transport through quasi-periodic structures, which profiles are described by multiple modulation frequencies. We show that resonant scattering at mixed-frequency resonances limits transmission efficiency of localized wave packets, leading to radiation and possible trapping of solitons. We obtain an explicit analytical expression for optimal quasi-periodic lattice profiles, where additional aperiodic modulations suppress mixed-frequency resonances, resulting in dramatic enhancement of soliton mobility. Our results can be applied to the design of photonic waveguide structures, and arrays of magnetic micro-traps for atomic Bose-Einstein condensates.Comment: 4 pages, 4 figure

    Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation

    Get PDF
    We consider the cubic defocusing nonlinear Schrödinger equation on the two dimensional torus. We exhibit smooth solutions for which the support of the conserved energy moves to higher Fourier modes. This behavior is quantified by the growth of higher Sobolev norms: given any δ[much less-than]1,K [much greater-than] 1, s > 1, we construct smooth initial data u 0 with ||u0||Hs , so that the corresponding time evolution u satisfies u(T)Hs[greater than]K at some time T. This growth occurs despite the Hamiltonian’s bound on ||u(t)||H1 and despite the conservation of the quantity ||u(t)||L2. The proof contains two arguments which may be of interest beyond the particular result described above. The first is a construction of the solution’s frequency support that simplifies the system of ODE’s describing each Fourier mode’s evolution. The second is a construction of solutions to these simpler systems of ODE’s which begin near one invariant manifold and ricochet from arbitrarily small neighborhoods of an arbitrarily large number of other invariant manifolds. The techniques used here are related to but are distinct from those traditionally used to prove Arnold Diffusion in perturbations of Hamiltonian systems

    The Littlewood-Gowers problem

    Full text link
    We show that if A is a subset of Z/pZ (p a prime) of density bounded away from 0 and 1 then the A(Z/pZ)-norm (that is the l^1-norm of the Fourier transform) of the characterstic function of A is bounded below by an absolute constant times (log p)^{1/2 - \epsilon} as p tends to infinity. This improves on the exponent 1/3 in recent work of Green and Konyagin.Comment: 31 pp. Corrected typos. Updated references

    Continuations of the nonlinear Schr\"odinger equation beyond the singularity

    Full text link
    We present four continuations of the critical nonlinear \schro equation (NLS) beyond the singularity: 1) a sub-threshold power continuation, 2) a shrinking-hole continuation for ring-type solutions, 3) a vanishing nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that leads to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity{\rev{expanding core}} after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time TcT_c, the phase of the singular core is only determined up to multiplication by eiθe^{i\theta}. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation ttt\rightarrow-t and ψψ\psi\rightarrow\psi^\ast, the singular core of the weak solution is symmetric with respect to TcT_c. Therefore, the sub-threshold power and the{\rev{shrinking}}-hole continuations are symmetric with respect to TcT_c, but continuations which are based on perturbations of the NLS equation are generically asymmetric
    corecore