104 research outputs found

    Current rectification by simple molecular quantum dots: an ab-initio study

    Full text link
    We calculate a current rectification by molecules containing a conjugated molecular group sandwiched between two saturated (insulating) molecular groups of different length (molecular quantum dot) using an ab-initio non-equilibrium Green's function method. In particular, we study S-(CH2)m-C10H6-(CH2)n-S dithiol with Naphthalene as a conjugated central group. The rectification current ratio ~35 has been observed at m = 2 and n = 10, due to resonant tunneling through the molecular orbital (MO) closest to the electrode Fermi level (lowest unoccupied MO in the present case). The rectification is limited by interference of other conducting orbitals, but can be improved by e.g. adding an electron withdrawing group to the naphthalene.Comment: 8 pages, 9 figure

    A single-electron transistor made from a cadmium selenide nanocrystal

    Full text link
    The techniques of colloidal chemistry permit the routine creation of semiconductor nanocrystals, whose dimensions are much smaller than those that can be realized using lithographic techniques. The sizes of such nanocrystals can be varied systematically to study quantum size effects or to make novel electronic or optical materials with tailored properties. Preliminary studies of both the electrical and optical properties of individual nanocrystals have been performed recently. These studies show clearly that a single excess charge on a nanocrystal can markedly influence its properties. Here we present measurements of electrical transport in a single-electron transistor made from a colloidal nanocrystal of cadmium selenide. This device structure enables the number of charge carriers on the nanocrystal to be tuned directly, and so permits the measurement of the energy required for adding successive charge carriers. Such measurements are invaluable in understanding the energy-level spectra of small electronic systems, as has been shown by similar studies of lithographically patterned quantum dots and small metallic grains.Comment: 3 pages, PDF forma

    High on-off conductance switching ratio in optically-driven self-assembled conjugated molecular systems

    Get PDF
    A new azobenzene-thiophene molecular switch is designed, synthesized and used to form self-assembled monolayers (SAM) on gold. An "on/off" conductance ratio up to 7x1E3 (with an average value of 1.5x1E3) is reported. The "on" conductance state is clearly identified to the cis isomer of the azobenzene moiety. The high "on/off" ratio is explained in terms of photo-induced, configuration-related, changes in the electrode-molecule interface energetics (changes in the energy position of the molecular orbitals with respect to the Fermi energy of electrodes) in addition to changes in the tunnel barrier length (length of the molecules). First principles DFT calculations demonstrate a better delocalization of the frontier orbitals, as well as a stronger electronic coupling between the azobenzene moiety and the electrode for the cis configuration over the trans one. Measured photoionization cross-sections for the molecules in the SAM are close to the known values for azobenzene derivatives in solution.Comment: 1 file with main text, figure and suppementary informatio

    Molecule-Electrode Interface Energetics in Molecular Junction: a Transition Voltage Spectroscopy Study

    Full text link
    We assess the performances of the transition voltage spectroscopy (TVS) method to determine the energies of the molecular orbitals involved in the electronic transport though molecular junctions. A large number of various molecular junctions made with alkyl chains but with different chemical structure of the electrode-molecule interfaces are studied. In the case of molecular junctions with clean, unoxidized electrode-molecule interfaces, i.e. alkylthiols and alkenes directly grafted on Au and hydrogenated Si, respectively, we measure transition voltages in the range 0.9 - 1.4 V. We conclude that the TVS method allows estimating the onset of the tail of the LUMO density of states, at energy located 1.0 - 1.2 eV above the electrode Fermi energy. For oxidized interfaces (e.g. the same monolayer measured with Hg or eGaIn drops, or monolayers formed on a slightly oxidized silicon substrate), lower transition voltages (0.1 - 0.6 V) are systematically measured. These values are explained by the presence of oxide-related density of states at energies lower than the HOMO-LUMO of the molecules. As such, the TVS method is a useful technique to assess the quality of the molecule-electrode interfaces in molecular junctions.Comment: Accepted for publication in J. Phys. Chem C. One pdf file including manuscript, figures and supporting informatio
    • …
    corecore