151 research outputs found
Electrochemical surface engineering of magnesium metal by plasma electrolytic oxidation and calcium phosphate deposition: biocompatibility and in vitro degradation studies
In this study, the surface of magnesium metal was electrochemically engineered for enhanced biocompatibility and controlled degradation in body fluid. Firstly, a plasma electrolytic oxidation (PEO) coating was formed on magnesium, followed by electrochemical deposition of calcium phosphate (CaP) using an unconventional electrolyte. Cytocompatibility tests using L929 cells revealed that the PEO-CaP coating significantly improved the biocompatibility of magnesium. In vitro electrochemical degradation experiments in simulated body fluid (SBF) showed that the PEO-CaP coating improved the degradation resistance of magnesium significantly. The corrosion current density (i(corr)) of the PEO-CaP coated magnesium was approximate to 99% and approximate to 97% lower than that of bare magnesium and the PEO-only coated magnesium, respectively. Similarly, electrochemical impedance spectroscopy (EIS) results showed that the polarisation resistance (R-P) of the PEO-CaP coated magnesium was one-order of magnitude higher as compared to the PEO-only coated magnesium and two-orders of magnitude higher than the bare magnesium, after 72 h immersion in SBF. Scanning electron microscopy (SEM) analysis revealed no localized degradation in the PEO-CaP coated magnesium. The study demonstrated that the PEO-CaP coating is a promising combination for enhancing the biocompatibility and reducing the degradation of magnesium for potential biodegradable implant applications
Zeolite-based photocatalysts immobilized on aluminum support by plasma electrolytic oxidation
The preparation and properties of zeolite-containing oxide coatings obtained
by plasma electrolytic oxidation are investigated and discussed. Pure and
Ce-exchanged natural (clinoptilolite) and synthetic (13X) zeolites are
immobilized on aluminum support from silicate-based electrolyte. Obtained
coatings are characterized with respect to their morphology, phase and chemical
composition, photocatalytic activity and anti-corrosion properties. It is
observed that all mentioned properties of obtained coatings are dependent on
processing time and type of immobilized zeolite. Coatings with Ce-exchanged
zeolite show higher photocatalytic activity and more effective corrosion
protection than those with pure zeolite. The highest photocatalytic activity is
observed for coatings processed in pulsed a DC regime for 30 minutes containing
Ce-exchanged 13X zeolite, followed by those containing Ce-exchanged
clinoptilolite. Pronounced anti-corrosion properties feature almost all samples
containing Ce-exchanged 13X zeolite
Layered double hydroxide based active corrosion protective sealing of plasma electrolytic oxidation/sol-gel composite coating on AA2024
This work reports a novel approach for growing layered double hydroxide (LDH) films on any plasma electrolytic oxidation (PEO) coated AA2024 independently of the nature of the PEO coating. The specific PEO coating chosen to carry out this work is considered to be not suitable for direct LDH growth because of phase composition and morphological features. In this paper, we describe a new methodology that consists of covering the PEO coating with a thin layer of aluminum oxide based xerogel as the source of aluminate ions for subsequent in-situ LDH growth. X-ray diffraction (XRD) and scanning electron microscope (SEM) images showed a successful formation of LDHs on the surface. An improvement in terms of active corrosion protection was also demonstrated by electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET).publishe
PEO Coatings with Active Protection Based on In-Situ Formed LDH-Nanocontainers
In the present work, for the first time Zn-Al layered double hydroxide (LDH) nanocontainers were grown in-situ on the surface and in the pores of plasma electrolytic oxidation (PEO) layer and then loaded with a corrosion inhibitor to provide an active protection. The developed LDH-based conversion process ensures partial sealing of the pores and provides an effective corrosion inhibition on demand leading to increased fault-tolerance and self-healing properties. The structure, morphology and composition of the LDH-sealed PEO coatings on 2024 aluminum alloy were investigated using SEM, TEM/FIB, XRD and GDOES. Electrochemical impedance spectroscopy and scanning vibrating electrode techniques show a remarkable increase in the corrosion resistance and fault tolerance when PEO coating is sealed with a LDH-inhibitor treatment
Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings
High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.
Properties of ZnO/ZnAlO composite PEO coatings on zinc
Recently the successful formation of PEO coatings on zinc in a phosphate
aluminate electrolyte was shown. The produced composite coatings contain
various mixtures of ZnO and ZnAlO. In frame of the current study, the
properties of the formed coatings including adhesion/cohesion, wear, corrosion
and photocatalytic activity were analysed to identify possible applications.
However, the coatings show internal porosity and a sponge-like structure. Thus
the cohesion within the coating is quite low. Pull-off tests have demonstrated
clear rupture within the PEO layer at strength values as low as 1 MPa. The
photocatalytic activity is limited, in spite of the formation of a higher
amount of ZnO at shorter treatment times. Interestingly, the composite coatings
of ZnO and higher amounts of ZnAlO spinel showed a higher activity, but
not sufficient for fast and effective catalytic cleaning applications
Thixomolded AZ91D and MRI153M magnesium alloys and their enhanced corrosion resistance
© 2020 The Authors. Materials and Corrosion published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim AZ91D and MRI153M alloys were produced by thixomolding. Their corrosion resistance is significantly higher than that of similar materials produced by ingot or die-casting. A corrosion rate smaller than 0.2 mm/year in 5 wt% NaCl solution is measured for the thixomolded AZ91D alloy. The corrosion behaviour was evaluated using immersion tests, electrochemical impedance spectroscopy, hydrogen evolution, glow discharge optical emission spectroscopy, and atomic emission spectroelectrochemistry. A bimodal microstructure is observed for both alloys, with the presence of coarse primary α-Mg grains, fine secondary α-Mg grains, β-phase, and other phases with a minor volume fraction. The amount of coarse primary α-Mg is significantly higher for the AZ91D compared with the MRI153M. The network of β-phase around the fine secondary α-Mg grains is better established in the thixomolded AZ91D alloy. A combination of several factors such as the ratio of primary to secondary α-Mg grains, localised corrosion or barrier effect due to other phases, as well as regions of preferential dissolution of the α-Mg due to chemical segregation, are thought to be responsible for the high corrosion resistance exhibited by the thixomolded AZ91D and MRI153M.German Ministry of Education and Research; Christian Doppler Societ
- …