149 research outputs found

    Competing Ground States of the New Class of Halogen-Bridged Metal Complexes

    Full text link
    Based on a symmetry argument, we study the ground-state properties of halogen-bridged binuclear metal chain complexes. We systematically derive commensurate density-wave solutions from a relevant two-band Peierls-Hubbard model and numerically draw the the ground-state phase diagram as a function of electron-electron correlations, electron-phonon interactions, and doping concentration within the Hartree-Fock approximation. The competition between two types of charge-density-wave states, which has recently been reported experimentally, is indeed demonstrated.Comment: 4 pages, 5 figures embedded, to appear in J. Phys. Soc. Jp

    Pressure-induced phase transitions of halogen-bridged binuclear metal complexes R_4[Pt_2(P_2O_5H_2)_4X]nH_2O

    Full text link
    Recent contrasting observations for halogen (X)-bridged binuclear platinum complexes R_4[Pt_2(P_2O_5H_2)_4X]nH_2O, that is, pressure-induced Peierls and reverse Peierls instabilities, are explained by finite-temperature Hartree-Fock calculations. It is demonstrated that increasing pressure transforms the initial charge-polarization state into a charge-density-wave state at high temperatures, whereas the charge-density-wave state oppositely declines with increasing pressure at low temperatures. We further predict that higher-pressure experiments should reveal successive phase transitions around room temperature.Comment: 5 pages, 4 figures embedded, to be published in Phys. Rev. B 64, September 1 (2001) Rapid Commu

    Quantum and Thermal Phase Transitions of Halogen-Bridged Binuclear Transition-Metal Complexes

    Full text link
    Aiming to settle the controversial observations for halogen-bridged binuclear transition-metal (MMX) complexes, finite-temperature Hartree-Fock calculations are performed for a relevant two-band Peierls-Hubbard model. Thermal, as well as quantum, phase transitions are investigated with particular emphasis on the competition between electron itinerancy, electron-phonon interaction and electron-electron correlation. Recently observed distinct thermal behaviors of two typical MMX compounds Pt_2(CH_3CS_2)_4I and (NH_4)_4[Pt_2(P_2O_5H_2)_4I]2H_2O are supported and further tuning of their electronic states is predicted.Comment: 5 pages, 3 figures embedded, to be published in J. Phys. Soc. Jpn. Vol.70, No.5 (2001

    Nickel(II) 3,4;9,10-Perylenediimide bis-Phosphonate Pentahydrate: A Metal−Organic Ferromagnetic Dye

    Get PDF
    The new metal−organic compound nickel(II) 3,4;9,10- perylenediimide bis-phosphonate pentahydrate, i.e. Ni2[(PDI-BP)- (H2O)2]·3H2O (1), has been synthesized and its structural and magnetic properties have been studied. Reaction of 3,4;9,10-perylenediimide bisphosphonate (PDI-BP, hereafter) ligand and nickel chloride in water resulted in the precipitation of a red and poorly crystalline solid (1). As the solid shows a poor crystalline organization of aggregates, the energy dispersive X-ray diffraction analysis (EDXD) technique has been used to obtain short-range order structural information of the single nanoaggregates by radial distribution function analysis. The overall structure of the compound is characterized by layers containing perylene planes shifted in the direction perpendicular to the stacking axes in such a way that only the outer rings overlap. The edges of the perylene planes are connected to the phosphonate groups through an imido group. The oxygen atoms of the [−PO3]2‑ group and those of the water molecules are bonded to the nickel ions resulting in a [NiO6] octahedral coordination sphere. The Ni−O bond lengths are 0.21 ± 0.08 nm and the Ni−O−Ni angles of aligned moieties are 95 ± 2°. The oxygen atoms of the water molecules and the nickel atoms are nearly planar and almost perpendicular to the perylene planes forming chains of edge-sharing octahedra. The magnetic properties of (1) show the presence of intrachain ferromagnetic Ni−Ni interactions and a long-range ferromagnetic order below 21 K with a canting angle and with a spin glasslike behavior due to disorder in the inorganic layer. Hysteresis cycles show a coercive field of ca. 272 mT at 2 K that decreases as the temperature is increased and vanishes at ca. 20 K

    Magnetodielectric coupling of a polar organic-inorganic hybrid Cr(II) phosphonate

    Get PDF
    Cr[(H(3)N-(CH(2))(2)-PO(3))(Cl)(H(2)O)] represents a rare example of a polar organic-inorganic hybrid material that exhibits a canted antiferromagnetic order below T(N)=5.5 K. The unusual coexistence of a polar crystal structure and magnetic order triggered our investigation of the magnetodielectric coupling. The coupling is evidenced by an anomaly in the temperature dependence of the dielectric constant epsilon below the Neel temperature. The magnetocapacitance is enhanced by one order of magnitude below T(N). The main characteristics of the magnetodielectic response are interpreted by Landau theoretical coupling terms

    Soliton excitations in halogen-bridged mixed-valence binuclear metal complexes

    Full text link
    Motivated by recent stimulative observations in halogen (X)-bridged binuclear transition-metal (M) complexes, which are referred to as MMX chains, we study solitons in a one-dimensional three-quarter-filled charge-density-wave system with both intrasite and intersite electron-lattice couplings. Two distinct ground states of MMX chains are reproduced and the soliton excitations on them are compared. In the weak-coupling region, all the solitons are degenerate to each other and are uniquely scaled by the band gap, whereas in the strong-coupling region, they behave differently deviating from the scenario in the continuum limit. The soliton masses are calculated and compared with those for conventional mononuclear MX chains.Comment: 9 pages, 10 figures embedded, to be published in J. Phys. Soc. Jpn. 71, No. 1 (2002

    Characterization of halogen-bridged binuclear metal complexes as hybridized two-band materials

    Full text link
    We study the electronic structure of halogen-bridged binuclear metal (MMX) complexes with a two-band Peierls-Hubbard model. Based on a symmetry argument, various density-wave states are derived and characterized. The ground-state phase diagram is drawn within the Hartree-Fock approximation, while the thermal behavior is investigated using a quantum Monte Carlo method. All the calculations conclude that a typical MMX compound Pt_2(CH_3CS_2)_4I should indeed be regarded as a d-p-hybridized two-band material, where the oxidation of the halogen ions must be observed even in the ground state, whereas another MMX family (NH_4)_4[Pt_2(P_2O_5H_2)_4X] may be treated as single-band materials.Comment: 16 pages, 11 figures embedded, to be published in Phys. Rev.

    Experimental Evidence of a Haldane Gap in an S = 2 Quasi-linear Chain Antiferromagnet

    Full text link
    The magnetic susceptibility of the S=2S = 2 quasi-linear chain Heisenberg antiferromagnet (2,2â€Č2'-bipyridine)trichloromanganese(III), MnCl_{3}(bipy), has been measured from 1.8 to 300 K with the magnetic field, H, parallel and perpendicular to the chains. The analyzed data yield g≈2g\approx 2 and J≈35J\approx 35 K. The magnetization, M, has been studied at 30 mK and 1.4 K in H up to 16 T. No evidence of long-range order is observed. Depending on crystal orientation, M≈0M\approx 0 at 30 mK until a critical field is achieved (Hc∄=1.2±0.2TH_{c\|} = 1.2\pm 0.2 T and $H_{c\bot} = 1.8\pm 0.2 T), where M increases continuously as H is increased. These results are interpreted as evidence of a Haldane gap.Comment: 11 pages, 4 figure

    Reference Force Field and CDW Amplitude of Mixed-Valence Halogen-Bridged Pt Complexes

    Full text link
    The spectroscopic effects of electron-phonon coupling in mixed-valence chlorine-bridged Pt chains complexes are investigated through a parallel infrared and Raman study of three compounds with decreasing Pt-Pt distance along the chain. The e-ph interaction is analyzed in terms of the Herzberg-Teller coupling scheme. We take into account the quadratic term and define a precise reference state. The force field relevant to this state is constructed, whereas the electronic structure is analyzed in terms of a simple phenomenological model, singling out a trimeric unit along the chain. In this way we are able to account for all the available optical data of the three compounds, and to estimate the relevant microscopic parameters, such as the e-ph coupling constants and the CDW amplitude.Comment: 10 pages, compressed postscript, 6 Tables and 5 Figures also in a compressed ps.Z file. Revision is in the submission format only (postscript instead of tex

    Self-control interventions for children under age 10 for improving self-control and delinquency and problem behaviors

    Get PDF
    Self-control improvement programs are intended to serve many purposes, most notably improving self-control. Yet, interventions such as these often aim to reduce delinquency and problem behaviors. However, there is currently no summary statement available regarding whether or not these programs are effective in improving self-control and reducing delinquency and problem behaviors. The main objective of this review is to assess the available research evidence on the effect of self-control improvement programs on self-control and delinquency and problem behaviors. In addition to investigating the overall effect of early selfcontrol improvement programs, this review will examine, to the extent possible, the context in which these programs may be most successful. The studies included in this systematic review indicate that self-control improvement programs are an effective intervention for improving self-control and reducing delinquency and problem behaviors, and that the effect of these programs appears to be rather robust across various weighting procedures, and across context, outcome source, and based on both published and unpublished data
    • 

    corecore