46 research outputs found

    Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

    Get PDF
    The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance

    6th annual simulation symposium

    No full text

    Towards the Big Picture: Enriching 3D Models with Information Visualisation and Vice Versa

    No full text
    visual representations without any concrete manifestation in the “real world”. However, a variety of abstract datasets can indeed be related to, and hence enriched by, real-world aspects. In these cases an additional virtual representation of the 3D object can help to gain a better insight into the connection between abstract and real-world issues. We demonstrate this approach with two prototype systems that combine information visualisation with 3D models in multiple coordinated views. The first prototype involves the visualisation of in-car communication traces. The 3D model of the car serves as one view among several and provides the user with information about the car’s activities. LibViz, our second prototype, is based on a full screen 3D representation of a library building. Measured data is visualised in overlaid, semi-transparent windows to allow the user interpretation of the data in its spatial context of the library’s 3D model. Based on the two prototypes, we identify the benefits and drawbacks of the approach, investigate aspects of coordination between the 3D model and the abstract visualisations, and discuss principals for a general approach

    Preventing Drowning Accidents Using Thermal Cameras

    No full text
    corecore