1,661 research outputs found

    Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout

    Get PDF
    As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement

    The ac magnetic response of mesoscopic type II superconductors

    Full text link
    The response of mesoscopic superconductors to an ac magnetic field is numerically investigated on the basis of the time-dependent Ginzburg-Landau equations (TDGL). We study the dependence with frequency ω\omega and dc magnetic field HdcH_{dc} of the linear ac susceptibility χ(Hdc,ω)\chi(H_{dc}, \omega) in square samples with dimensions of the order of the London penetration depth. At Hdc=0H_{dc}=0 the behavior of χ\chi as a function of ω\omega agrees very well with the two fluid model, and the imaginary part of the ac susceptibility, χ"(ω)\chi"(\omega), shows a dissipative a maximum at the frequency Îœo=c2/(4πσλ2)\nu_o=c^2/(4\pi \sigma\lambda^2). In the presence of a magnetic field a second dissipation maximum appears at a frequency ωpâ‰ȘÎœ0\omega_p\ll\nu_0. The most interesting behavior of mesoscopic superconductors can be observed in the χ(Hdc)\chi(H_{dc}) curves obtained at a fixed frequency. At a fixed number of vortices, χ"(Hdc)\chi"(H_{dc}) continuously increases with increasing HdcH_{dc}. We observe that the dissipation reaches a maximum for magnetic fields right below the vortex penetration fields. Then, after each vortex penetration event, there is a sudden suppression of the ac losses, showing discontinuities in χ"(Hdc)\chi"(H_{dc}) at several values of HdcH_{dc}. We show that these discontinuities are typical of the mesoscopic scale and disappear in macroscopic samples, which have a continuos behavior of χ(Hdc)\chi(H_{dc}). We argue that these discontinuities in χ(Hdc)\chi(H_{dc}) are due to the effect of {\it nascent vortices} which cause a large variation of the amplitude of the order parameter near the surface before the entrance of vortices.Comment: 12 pages, 9 figures, RevTex

    Geo-neutrinos: A systematic approach to uncertainties and correlations

    Get PDF
    Geo-neutrinos emitted by heat-producing elements (U, Th and K) represent a unique probe of the Earth interior. The characterization of their fluxes is subject, however, to rather large and highly correlated uncertainties. The geochemical covariance of the U, Th and K abundances in various Earth reservoirs induces positive correlations among the associated geo-neutrino fluxes, and between these and the radiogenic heat. Mass-balance constraints in the Bulk Silicate Earth (BSE) tend instead to anti-correlate the radiogenic element abundances in complementary reservoirs. Experimental geo-neutrino observables may be further (anti)correlated by instrumental effects. In this context, we propose a systematic approach to covariance matrices, based on the fact that all the relevant geo-neutrino observables and constraints can be expressed as linear functions of the U, Th and K abundances in the Earth's reservoirs (with relatively well-known coefficients). We briefly discuss here the construction of a tentative "geo-neutrino source model" (GNSM) for the U, Th, and K abundances in the main Earth reservoirs, based on selected geophysical and geochemical data and models (when available), on plausible hypotheses (when possible), and admittedly on arbitrary assumptions (when unavoidable). We use then the GNSM to make predictions about several experiments ("forward approach"), and to show how future data can constrain - a posteriori - the error matrix of the model itself ("backward approach"). The method may provide a useful statistical framework for evaluating the impact and the global consistency of prospective geo-neutrino measurements and Earth models.Comment: 17 pages, including 4 figures. To appear on "Earth, Moon, and Planets," Special Issue on "Neutrino Geophysics," Proceedings of Neutrino Science 2005 (Honolulu, Hawaii, Dec. 2005

    Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest

    Get PDF
    Most of the enteric nervous system derives from the “vagal” neural crest, lying at the level of somites 1–7, which invades the digestive tract rostro-caudally from the foregut to the hindgut. Little is known about the initial phase of this colonization, which brings enteric precursors into the foregut. Here we show that the “vagal crest” subsumes two populations of enteric precursors with contrasted origins, initial modes of migration, and destinations. Crest cells adjacent to somites 1 and 2 produce Schwann cell precursors that colonize the vagus nerve, which in turn guides them into the esophagus and stomach. Crest cells adjacent to somites 3–7 belong to the crest streams contributing to sympathetic chains: they migrate ventrally, seed the sympathetic chains, and colonize the entire digestive tract thence. Accordingly, enteric ganglia, like sympathetic ones, are atrophic when deprived of signaling through the tyrosine kinase receptor ErbB3, while half of the esophageal ganglia require, like parasympathetic ones, the nerve-associated form of the ErbB3 ligand, Neuregulin-1. These dependencies might bear relevance to Hirschsprung disease, with which alleles of Neuregulin-1 are associated

    Classification of Light-Induced Desorption of Alkali Atoms in Glass Cells Used in Atomic Physics Experiments

    Full text link
    We attempt to provide physical interpretations of light-induced desorption phenomena that have recently been observed for alkali atoms on glass surfaces of alkali vapor cells used in atomic physics experiments. We find that the observed desorption phenomena are closely related to recent studies in surface science, and can probably be understood in the context of these results. If classified in terms of the photon-energy dependence, the coverage and the bonding state of the alkali adsorbates, the phenomena fall into two categories: It appears very likely that the neutralization of isolated ionic adsorbates by photo-excited electron transfer from the substrate is the origin of the desorption induced by ultraviolet light in ultrahigh vacuum cells. The desorption observed in low temperature cells, on the other hand, which is resonantly dependent on photon energy in the visible light range, is quite similar to light-induced desorption stimulated by localized electronic excitation on metallic aggregates. More detailed studies of light-induced desorption events from surfaces well characterized with respect to alkali coverage-dependent ionicity and aggregate morphology appear highly desirable for the development of more efficient alkali atom sources suitable to improve a variety of atomic physics experiments.Comment: 6 pages, 1 figure; minor corrections made, published in e-Journal of Surface Science and Nanotechnology at http://www.jstage.jst.go.jp/article/ejssnt/4/0/4_63/_articl

    Phase-field approach to heterogeneous nucleation

    Full text link
    We consider the problem of heterogeneous nucleation and growth. The system is described by a phase field model in which the temperature is included through thermal noise. We show that this phase field approach is suitable to describe homogeneous as well as heterogeneous nucleation starting from several general hypotheses. Thus we can investigate the influence of grain boundaries, localized impurities, or any general kind of imperfections in a systematic way. We also put forward the applicability of our model to study other physical situations such as island formation, amorphous crystallization, or recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical Review

    Vortex structure in dd-wave superconductors

    Full text link
    Vortex structure of pure dx2−y2d_{x^2-y^2}-wave superconductors is microscopically analyzed in the framework of the quasi-classical Eilenberger equations. Selfconsistent solution for the dd-wave pair potential is obtained for the first time in the case of an isolated vortex. The vortex core structure, i.e., the pair potential, the supercurrent and the magnetic field, is found to be fourfold symmetric even in the case that the mixing of ss-wave component is absent. The detailed temperature dependences of these quantities are calculated. The fourfold symmetry becomes clear when temperature is decreased. The local density of states is calculated for the selfconsistently obtained pair potential. From the results, we discuss the flow trajectory of the quasiparticles around a vortex, which is characteristic in the dx2−y2d_{x^2-y^2}-wave superconductors. The experimental relevance of our results to high temperature superconductors is also given.Comment: 22 pages, RevTex, 23 figures available upon reques

    Enhanced Direct CP Violation in B±→ρ0π±B^{\pm} \to \rho^{0} \pi^{\pm}

    Full text link
    We study direct CP violation in the hadronic decay B±→ρ0π±B^{\pm} \to \rho^{0}\pi^{\pm}, including the effect of ρ−ω\rho - \omega mixing. We find that the CP violating asymmetry is strongly dependent on the CKM matrix elements, especially the Wolfenstein parameter η\eta. For fixed NcN_{c} (the effective parameter associated with factorization), the CP violating asymmetry, aa, has a maximum of order 3030%-50% when the invariant mass of the π+π−\pi^{+}\pi^{-} pair is in the vicinity of the ω\omega resonance. The sensitivity of the asymmetry, aa, to NcN_{c} is small. Moreover, if NcN_{c} is constrained using the latest experimental branching ratios from the CLEO collaboration, we find that the sign of sin⁥Ύ\sin \delta is always positive. Thus, a measurement of direct CP violation in B±→ρ0π±B^{\pm} \to \rho^{0}\pi^{\pm} would remove the mod(π)(\pi) ambiguity in arg[−VtdVtb⋆VudVub⋆]{\rm arg}[ - \frac{V_{td}V_{tb}^{\star}}{V_{ud}V_{ub}^{\star}}].Comment: 37 pages, 7 figure
    • 

    corecore