941 research outputs found

    String Imprints from a Pre-inflationary Era

    Full text link
    We derive the equations governing the dynamics of cosmic strings in a flat anisotropic universe of Bianchi type I and study the evolution of simple cosmic string loop solutions. We show that the anisotropy of the background can have a characteristic effect in the loop motion. We discuss some cosmological consequences of these findings and, by extrapolating our results to cosmic string networks, we comment on their ability to survive an inflationary epoch, and hence be a possible fossil remnant (still visible today) of an anisotropic phase in the very early universe.Comment: 5 pages, 3 figure

    A Supernova Brane Scan

    Get PDF
    We consider a `brane-world scenario' recently introduced by Dvali, Gabadadze and Porrati, and subsequently proposed as an alternative to a cosmological constant in explaining the current acceleration of the universe. We show that, contrary to these claims, this proposal is already strongly disfavoured by the available Type Ia Supernovae, Cosmic Microwave Background and cluster data.Comment: Further cosmetic changes; to appear in The Astrophysical Journal, v56

    Cosmic Numbers: A Physical Classification for Cosmological Models

    Get PDF
    We introduce the notion of the cosmic numbers of a cosmological model, and discuss how they can be used to naturally classify models according to their ability to solve some of the problems of the standard cosmological model.Comment: 3 pages, no figures. v2: Two references added, cosmetic changes. Version to appear in Phys. Rev. D (Brief reports

    Matter power spectrum for the generalized Chaplygin gas model: The relativistic case

    Full text link
    The generalized Chaplygin gas (GCG) model is the prototype of a unified model of dark energy (DE) and dark matter (DM). It is characterized by equation-of-state (EoS) parameters AA and α\alpha. We use a statistical analysis of the 2dFGRS data to constrain these parameters. In particular, we find that very small (close to zero) and very large values (α1\alpha\gg 1) of the equation-of-state parameter α\alpha are preferred. To test the validity of this type of unification of the dark sector we admit the existence of a separate DM component in addition to the Chaplygin gas and calculate the probability distribution for the fractional contributions of both components to the total energy density. This analysis favors a model for which the Universe is nearly entirely made up of the separate DM component with an almost negligible Chaplygin gas part. This confirms the results of a previous Newtonian analysis.Comment: Latex file, 8 pages, 15 figures in eps forma
    corecore