1,414 research outputs found

    Is \lq\lq Heavy Quark Damping Rate Puzzle'' in Hot QCD Really the Puzzle?

    Get PDF
    Within the framework of perturbative resummation scheme of Pisarski and Braaten, the decay- or damping-rate of a moving heavy quark (muon) to leading order in weak coupling in hot QCD (QED) is examined. Although, as is well known, the conventionally-defined damping rate diverges logarithmically at the infrared limit, shown is that no such divergence appears in the physically measurable decay rate. The cancellation occurs between the contribution from the \lq\lq real'' decay diagram and the contribution from the diagrams with \lq\lq thermal radiative correction''.Comment: 13pages, OCU-PHYS-15

    Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa

    Full text link
    The carnivorous aquatic Waterwheel Plant (Aldrovanda vesiculosa L.) and the closely related terrestrial Venus Flytrap (Dionaea muscipula SOL. EX J. ELLIS) both feature elaborate snap-traps, which shut after reception of an external mechanical stimulus by prey animals. Traditionally, Aldrovanda is considered as a miniature, aquatic Dionaea, an assumption which was already established by Charles Darwin. However, videos of snapping traps from both species suggest completely different closure mechanisms. Indeed, the well-described snapping mechanism in Dionaea comprises abrupt curvature inversion of the two trap lobes, while the closing movement in Aldrovanda involves deformation of the trap midrib but not of the lobes, which do not change curvature. In this paper, we present the first detailed mechanical models for these plants, which are based on the theory of thin solid membranes and explain this difference by showing that the fast snapping of Aldrovanda is due to kinematic amplification of the bending deformation of the midrib, while that of Dionaea unambiguously relies on the buckling instability that affects the two lobes.Comment: accepted in Physical Review

    Cerebral Glycogen Distribution and Aging

    Get PDF
    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well‐defined glycogen immunoreactive signals compared with the conventional periodic acid‐Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3‐CA1 and striatum had a ‘patchy’ appearance with glycogen‐rich and glycogen‐poor astrocytes appearing in alternation. The glycogen patches were more evident with large‐molecule glycogen in young adult mice but they were hardly observable in aged mice (1–2 years old). Our results reveal brain region‐dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes

    The fluctuation energy balance in non-suspended fluid-mediated particle transport

    Full text link
    Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small

    Energy and pressure densities of a hot quark-gluon plasma

    Get PDF
    We calculate the energy and hydrostatic pressure densities of a hot quark-gluon plasma in thermal equilibrium through diagrammatic analyses of the statistical average, Θμν\langle \Theta_{\mu \nu} \rangle, of the energy-momentum-tensor operator Θμν\Theta_{\mu \nu}. To leading order at high temperature, the energy density of the long wave length modes is consistently extracted by applying the hard-thermal-loop resummation scheme to the operator-inserted no-leg thermal amplitudes Θμν\langle \Theta_{\mu \nu} \rangle. We find that, for the long wave length gluons, the energy density, being positive, is tremendously enhanced as compared to the noninteracting case, while, for the quarks, no noticeable deviation from the noninteracting case is found.Comment: 33 pages. Figures are not include

    Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System

    Full text link
    Rough surface effect on the Meissner diamagnetic current in the normal layer of proximity contact N-S bi-layer is investigated in the clean limit. The diamagnetic current and the screening length are calculated by use of quasi-classical Green's function. We show that the surface roughness has a sizable effect, even when a normal layer width is large compared with the coherence length ξ=vF/πTc\xi =v_{\rm F}/\pi T_{\rm c}. The effect is as large as that of the impurity scattering and also as that of the finite reflection at the N-S interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-

    Strong Anisotropy in Spin Suceptibility of Superfluid 3He-B Film Caused by Surface Bound States

    Full text link
    Spin susceptibility of superfluid 3He-B film with specular surfaces is calculated. It is shown that, when the magnetic field is applied in a direction perpendiculr to the film, the suseptibility is significantly enhanced by the contribution from the surface bound states. No such enhancement is found for the magnetic field parallel to the film. A simplified model with spatially constant order parameter is used to elucidate the magnetic properties of the surface bound states. The Majorana nature of the zero energy bound state is also mentioned.Comment: 4 pages, 4 figure

    Andreev Bound States and Self-Consistent Gap Functions for SNS and SNSNS Systems

    Full text link
    Andreev bound states in clean, ballistic SNS and SNSNS junctions are calculated exactly and by using the Andreev approximation (AA). The AA appears to break down for junctions with transverse dimensions chosen such that the motion in the longitudinal direction is very slow. The doubly degenerate states typical for the traveling waves found in the AA are replaced by two standing waves in the exact treatment and the degeneracy is lifted. A multiple-scattering Green's function formalism is used, from which the states are found through the local density of states. The scattering by the interfaces in any layered system of ballistic normal metals and clean superconducting materials is taken into account exactly. The formalism allows, in addition, for a self-consistent determination of the gap function. In the numerical calculations the pairing coupling constant for aluminum is used. Various features of the proximity effect are shown

    Analytical Formulation of the Local Density of States around a Vortex Core in Unconventional Superconductors

    Full text link
    On the basis of the quasiclassical theory of superconductivity, we obtain a formula for the local density of states (LDOS) around a vortex core of superconductors with anisotropic pair-potential and Fermi surface in arbitrary directions of magnetic fields. Earlier results on the LDOS of d-wave superconductors and NbSe2_2 are naturally interpreted within our theory geometrically; the region with high intensity of the LDOS observed in numerical calculations turns out to the enveloping curve of the trajectory of Andreev bound states. We discuss experimental results on YNi2_2B2_2C within the quasiclassical theory of superconductivity.Comment: 13 pages, 16 figure

    Absorption of Electro-magnetic Waves in a Magnetized Medium

    Full text link
    In continuation to our earlier work, in which the structure of the vacuum polarisation tensor in a medium was analysed in presence of a background electro-magnetic field, we discuss the absorptive part of the vacuum polarization tensor. Using the real time formalism of finite temperature field theory we calculate the absorptive part of 1-loop vacuum polarisation tensor in the weak field limit (eB<m2eB < m^2). Estimates of the absorption probability are also made for different physical conditions of the background medium.Comment: 9 Pages. One figure. LaTe
    corecore