9,174 research outputs found
Pole Dancing: 3D Morphs for Tree Drawings
We study the question whether a crossing-free 3D morph between two
straight-line drawings of an -vertex tree can be constructed consisting of a
small number of linear morphing steps. We look both at the case in which the
two given drawings are two-dimensional and at the one in which they are
three-dimensional. In the former setting we prove that a crossing-free 3D morph
always exists with steps, while for the latter steps
are always sufficient and sometimes necessary.Comment: Appears in the Proceedings of the 26th International Symposium on
Graph Drawing and Network Visualization (GD 2018
Hierarchical Partial Planarity
In this paper we consider graphs whose edges are associated with a degree of
{\em importance}, which may depend on the type of connections they represent or
on how recently they appeared in the scene, in a streaming setting. The goal is
to construct layouts of these graphs in which the readability of an edge is
proportional to its importance, that is, more important edges have fewer
crossings. We formalize this problem and study the case in which there exist
three different degrees of importance. We give a polynomial-time testing
algorithm when the graph induced by the two most important sets of edges is
biconnected. We also discuss interesting relationships with other
constrained-planarity problems.Comment: Conference version appeared in WG201
Computing NodeTrix Representations of Clustered Graphs
NodeTrix representations are a popular way to visualize clustered graphs;
they represent clusters as adjacency matrices and inter-cluster edges as curves
connecting the matrix boundaries. We study the complexity of constructing
NodeTrix representations focusing on planarity testing problems, and we show
several NP-completeness results and some polynomial-time algorithms. Building
on such algorithms we develop a JavaScript library for NodeTrix representations
aimed at reducing the crossings between edges incident to the same matrix.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Morphing Planar Graph Drawings Optimally
We provide an algorithm for computing a planar morph between any two planar
straight-line drawings of any -vertex plane graph in morphing steps,
thus improving upon the previously best known upper bound. Further, we
prove that our algorithm is optimal, that is, we show that there exist two
planar straight-line drawings and of an -vertex plane
graph such that any planar morph between and requires
morphing steps
Simultaneous Embeddings with Few Bends and Crossings
A simultaneous embedding with fixed edges (SEFE) of two planar graphs and
is a pair of plane drawings of and that coincide when restricted to
the common vertices and edges of and . We show that whenever and
admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve
with few bends and every pair of edges has few crossings. Specifically: (1) if
and are trees then one bend per edge and four crossings per edge pair
suffice (and one bend per edge is sometimes necessary), (2) if is a planar
graph and is a tree then six bends per edge and eight crossings per edge
pair suffice, and (3) if and are planar graphs then six bends per edge
and sixteen crossings per edge pair suffice. Our results improve on a paper by
Grilli et al. (GD'14), which proves that nine bends per edge suffice, and on a
paper by Chan et al. (GD'14), which proves that twenty-four crossings per edge
pair suffice.Comment: Full version of the paper "Simultaneous Embeddings with Few Bends and
Crossings" accepted at GD '1
Erupting Cataclysmic Variable Stars in the Nearest Globular Cluster, NGC 6397: Intermediate Polars?
NGC 6397 is the closest globular cluster, and hence the ideal place to search
for faint stellar populations such as cataclysmic variables (CVs). HST and
Chandra observers have identified nine certain and likely CVs in this nearby
cluster, including several magnetic CV candidates. We have combined our recent
UV imagery with archival HST images of NGC 6397 to search for new CV candidates
and especially to look for dwarf nova-like eruptive events. We find remarkable
and somewhat unexpected dwarf nova-like eruptions of the two well-known
cataclysmic systems CV2 and CV3. These two objects have been claimed to be {\it
magnetic} CVs, as indicated by their helium emission-line spectra. Magnetic
fields in CVs are usually expected to prevent the disk instability that leads
to dwarf nova eruptions. In fact, most field magnetic CVs are observed to not
undergo eruptions. Our observations of the dwarf nova eruptions of CV2 and CV3
can be reconciled with these objects' HeII emission lines if both objects are
infrequently-erupting intermediate polars, similar to EX Hya. If this is the
case for most globular cluster CVs then we can reconcile the many X-ray and UV
bright CV candidates seen by Chandra and HST with the very small numbers of
erupting dwarf novae observed in cluster cores.Comment: 12 pages, 3 figures. Accepted for publication in The Astronomical
Journal. Two additional authors adde
A Universal Point Set for 2-Outerplanar Graphs
A point set is universal for a class if
every graph of has a planar straight-line embedding on . It is
well-known that the integer grid is a quadratic-size universal point set for
planar graphs, while the existence of a sub-quadratic universal point set for
them is one of the most fascinating open problems in Graph Drawing. Motivated
by the fact that outerplanarity is a key property for the existence of small
universal point sets, we study 2-outerplanar graphs and provide for them a
universal point set of size .Comment: 23 pages, 11 figures, conference version at GD 201
- …
