872 research outputs found

    Highly Designable Protein Structures and Inter Monomer Interactions

    Full text link
    By exact computer enumeration and combinatorial methods, we have calculated the designability of proteins in a simple lattice H-P model for the protein folding problem. We show that if the strength of the non-additive part of the interaction potential becomes larger than a critical value, the degree of designability of structures will depend on the parameters of potential. We also show that the existence of a unique ground state is highly sensitive to mutation in certain sites.Comment: 14 pages, Latex file, 3 latex and 6 eps figures are include

    A Multicanonical Molecular Dynamics Study on a Simple Bead-Spring Model for Protein Folding

    Full text link
    We have performed a multicanonical molecular dynamics simulation on a simple model protein.We have studied a model protein composed of charged, hydrophobic, and neutral spherical bead monomers.Since the hydrophobic interaction is considered to significantly affect protein folding, we particularly focus on the competition between effects of the Coulomb interaction and the hydrophobic interaction. We found that the transition which occurs upon decreasing the temperature is markedly affected by the change in both parameters and forms of the hydrophobic potential function, and the transition changes from first order to second order, when the Coulomb interaction becomes weaker.Comment: 7 pages, 6 postscript figures, To appear in J.Phys.Soc.Jpn. Vol.70 No.

    Sequence Dependence of Self-Interacting Random Chains

    Full text link
    We study the thermodynamic behavior of the random chain model proposed by Iori, Marinari and Parisi, and how this depends on the actual sequence of interactions along the chain. The properties of randomly chosen sequences are compared to those of designed ones, obtained through a simulated annealing procedure in sequence space. We show that the transition to the folded phase takes place at a smaller strength of the quenched disorder for designed sequences. As a result, folding can be relatively fast for these sequences.Comment: 14 pages, uuencoded compressed postscript fil

    Thermodynamics of aggregation of two proteins

    Full text link
    We investigate aggregation mechanism of two proteins in a thermodynamically unambiguous manner by considering the finite size effect of free energy landscape of HP lattice protein model. Multi-Self-Overlap-Ensemble Monte Carlo method is used for numerical calculations. We find that a dimer can be formed spontaneously as a thermodynamically stable state when the system is small enough. It implies the possibility that the aggregation of proteins in a cell is triggered when they are confined in a small region by, for example, being surrounded by other macromolecules.We also find that the dimer exhibits a transition between unstable state and metastable state in the infinite system.Comment: jpsj2.cls, 7 pages, 14 figures; misconfigurations of Fig.Nos. correcte

    Reply to Comment on "Criterion that Determines the Foldability of Proteins"

    Full text link
    We point out that the correlation between folding times and σ=(TθTf)/Tθ\sigma = (T_{\theta } - T_{f})/T_{\theta } in protein-like heteropolymer models where TθT_{\theta } and TfT_{f} are the collapse and folding transition temperatures was already established in 1993 before the other presumed equivalent criterion (folding times correlating with TfT_{f} alone) was suggested. We argue that the folding times for these models show no useful correlation with the energy gap even if restricted to the ensemble of compact structures as suggested by Karplus and Shakhnovich (cond-mat/9606037).Comment: 6 pages, Latex, 2 Postscript figures. Plots explicitly showing the lack of correlation between folding time and energy gap are adde

    Entropic Barriers, Frustration and Order: Basic Ingredients in Protein Folding

    Full text link
    We solve a model that takes into account entropic barriers, frustration, and the organization of a protein-like molecule. For a chain of size MM, there is an effective folding transition to an ordered structure. Without frustration, this state is reached in a time that scales as MλM^{\lambda}, with λ3\lambda\simeq 3. This scaling is limited by the amount of frustration which leads to the dynamical selectivity of proteins: foldable proteins are limited to 300\sim 300 monomers; and they are stable in {\it one} range of temperatures, independent of size and structure. These predictions explain generic properties of {\it in vivo} proteins.Comment: 4 pages, 4 Figures appended as postscript fil

    Geometrically Reduced Number of Protein Ground State Candidates

    Full text link
    Geometrical properties of protein ground states are studied using an algebraic approach. It is shown that independent from inter-monomer interactions, the collection of ground state candidates for any folded protein is unexpectedly small: For the case of a two-parameter Hydrophobic-Polar lattice model for LL-mers, the number of these candidates grows only as L2L^2. Moreover, the space of the interaction parameters of the model breaks up into well-defined domains, each corresponding to one ground state candidate, which are separated by sharp boundaries. In addition, by exact enumeration, we show there are some sequences which have one absolute unique native state. These absolute ground states have perfect stability against change of inter-monomer interaction potential.Comment: 9 page, 4 ps figures are include

    The Origin of the Designability of Protein Structures

    Full text link
    We examined what determines the designability of 2-letter codes (H and P) lattice proteins from three points of view. First, whether the native structure is searched within all possible structures or within maximally compact structures. Second, whether the structure of the used lattice is bipartite or not. Third, the effect of the length of the chain, namely, the number of monomers on the chain. We found that the bipartiteness of the lattice structure is not a main factor which determines the designability. Our results suggest that highly designable structures will be found when the length of the chain is sufficiently long to make the hydrophobic core consisting of enough number of monomers.Comment: 17 pages, 2 figure

    Deriving amino acid contact potentials from their frequencies of occurence in proteins: a lattice model study

    Full text link
    The possibility of deriving the contact potentials between amino acids from their frequencies of occurence in proteins is discussed in evolutionary terms. This approach allows the use of traditional thermodynamics to describe such frequencies and, consequently, to develop a strategy to include in the calculations correlations due to the spatial proximity of the amino acids and to their overall tendency of being conserved in proteins. Making use of a lattice model to describe protein chains and defining a "true" potential, we test these strategies by selecting a database of folding model sequences, deriving the contact potentials from such sequences and comparing them with the "true" potential. Taking into account correlations allows for a markedly better prediction of the interaction potentials
    corecore