100 research outputs found

    Classical Analog of Electromagnetically Induced Transparency

    Get PDF
    We present a classical analog for Electromagnetically Induced Transparency (EIT). In a system of just two coupled harmonic oscillators subject to a harmonic driving force we can reproduce the phenomenology observed in EIT. We describe a simple experiment performed with two linearly coupled RLC circuits which can be taught in an undergraduate laboratory class.Comment: 6 pages, two-column, 6 figures, submitted to the Am. J. Phy

    Limitation of the modulation method to smooth wire guide roughness

    Full text link
    It was recently demonstrated that wire guide roughness can be suppressed by modulating the wire currents so that the atoms experience a time-averaged potential without roughness. We theoretically study the limitations of this technique. At low modulation frequency, we show that the longitudinal potential modulation produces a heating of the cloud and we compute the heating rate. We also give a quantum derivation of the rough conservative potential associated with the micro-motion of the atoms. At large modulation frequency, we compute the loss rate due to non adiabatic spin flip and show it presents resonnances at multiple modulation frequencies. These studies show that the modulation technique works for a wide range of experimental parameters. We also give conditions to realise radio-frequency evaporative cooling in such a modulated trap.Comment: 11 page

    Super-poissonian photon statistics and correlations between pump and probe fields in Electromagnetically Induced Transparency

    Get PDF
    We have measured the photon statistics of pump and probe beams after interaction with Rb atoms in a situation of Electromagnetically Induced Transparency. Both fields present super-poissonian statistics and their intensities become correlated, in good qualitative agreement with theoretical predictions in which both fields are treated quantum-mechanically. The intensity correlations measured are a first step towards the observation of entanglement between the fields.Comment: 4 pages, two-column, 4 figures, first submitted to PRL on Aug. 6, 200

    Diffraction effects on light-atomic ensemble quantum interface

    Full text link
    We present a simple method to include the effects of diffraction into the description of a light-atomic ensemble quantum interface in the context of collective variables. Carrying out a scattering calculation we single out the purely geometrical effect. We apply our method to the experimentally relevant case of Gaussian shaped atomic samples stored in single beam optical dipole traps and probed by a Gaussian beam. We derive analytical scaling relations for the effect of the interaction geometry and compare our findings to results from 1-dimensional models of light propagation.Comment: 13 pages, 7 figures, comments welcom

    Non-Destructive Probing of Rabi Oscillations on the Cesium Clock Transition near the Standard Quantum Limit

    Full text link
    We report on non-destructive observation of Rabi oscillations on the Cs clock transition. The internal atomic state evolution of a dipole-trapped ensemble of cold atoms is inferred from the phase shift of a probe laser beam as measured using a Mach-Zehnder interferometer. We describe a single color as well as a two-color probing scheme. Using the latter, measurements of the collective pseudo-spin projection of atoms in a superposition of the clock states are performed and the observed spin fluctuations are shown to be close to the standard quantum limit.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials

    Full text link
    We review the basic physics behind light interaction with plasmonic nanoparticles. The theoretical foundations of light scattering on one metallic particle (a plasmonic monomer) and two interacting particles (a plasmonic dimer) are systematically investigated. Expressions for effective particle susceptibility (polarizability) are derived, and applications of these results to plasmonic nanoantennas are outlined. In the long-wavelength limit, the effective macroscopic parameters of an array of plasmonic dimers are calculated. These parameters are attributable to an effective medium corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial where plasmonic monomers or dimers have the function of "meta-atoms". It is shown that planar dimers consisting of rod-like particles generally possess elliptical dichroism and function as atoms for planar chiral metamaterials. The fabricational simplicity of the proposed rod-dimer geometry can be used in the design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.

    Fano resonances in plasmonic core-shell particles and the Purcell effect

    Full text link
    Despite a long history, light scattering by particles with size comparable with the light wavelength still unveils surprising optical phenomena, and many of them are related to the Fano effect. Originally described in the context of atomic physics, the Fano resonance in light scattering arises from the interference between a narrow subradiant mode and a spectrally broad radiation line. Here, we present an overview of Fano resonances in coated spherical scatterers within the framework of the Lorenz-Mie theory. We briefly introduce the concept of conventional and unconventional Fano resonances in light scattering. These resonances are associated with the interference between electromagnetic modes excited in the particle with different or the same multipole moment, respectively. In addition, we investigate the modification of the spontaneous-emission rate of an optical emitter at the presence of a plasmonic nanoshell. This modification of decay rate due to electromagnetic environment is referred to as the Purcell effect. We analytically show that the Purcell factor related to a dipole emitter oriented orthogonal or tangential to the spherical surface can exhibit Fano or Lorentzian line shapes in the near field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano Resonances in Optics and Microwaves: Physics and Application", Springer Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev, and A. Miroshnichenk

    Thermal properties of AlN-based atom chips

    Full text link
    We have studied the thermal properties of atom chips consisting o high thermal conductivity Aluminum Nitride (AlN) substrates on which gold microwires are directly deposited. We have measured the heating of wires of several widths and with different thermal couplings to the copper mount holding the chip. The results are in good agreement with a theoretical model where the copper mount is treated as a heat sink and the thermal interface resistance between the wire and the substrate is vanishing. We give analytical formulas describing the different transient heating regimes and the steady state. We identify criteria to optimize the design of a chip as well as the maximal currents IcI_c that can be fed in the wires. For a 600 μ\mum thick-chip glued on a copper block with Epotek H77, we find Ic=16I_c=16 A for a 3 μ\mum high, 200 μ\mum wide-wire
    corecore