2,908 research outputs found
Phonons in Nanocrystalline 57Fe
We measured the phonon density of states (DOS) of nanocrystalline Fe by resonant inelastic nuclear γ-ray scattering. The nanophase material shows large distortions in its phonon DOS. We attribute the high energy distortion to lifetime broadening. A damped harmonic oscillator model for the phonons provides a low quality factor, Qu, averaging about 5, but the longitudinal modes may have been broadened most. The nanocrystalline Fe also shows an enhancement in its phonon DOS at energies below 15 meV. The difference in vibrational entropy of the bulk and nanocrystalline Fe was small, owing to competing changes in the nanocrystalline phonon DOS at low and high energies
Coordinated inventory replenishment and outsourced transportation operatoins
Cataloged from PDF version of article.We consider a one-warehouse N retailers supply chain with stochastic demand. Inventory is managed in-house whereas transportation is outsourced to a 3PL provider. We develop analytical expressions for the operating characteristics under both periodic and continuous joint replenishment policies. We identify the settings where a periodic review policy is comparable to a continuous review one. In our numerical test-bed, the periodic policy performed best in larger supply chains operating with larger trucks. We also observed that if the excess utilization charge is less than 25%, outsourcing becomes beneficial even if outsourcing cost is 25% more than the in-house fleet costs
A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: application to goethite and jarosite
We measured the reduced partition function ratios for iron isotopes in
goethite FeO(OH), potassium-jarosite KFe3(SO4)2(OH)6, and hydronium-jarosite
(H3O)Fe3(SO4)2(OH)6, by Nuclear Resonant Inelastic X-Ray Scattering (NRIXS,
also known as Nuclear Resonance Vibrational Spectroscopy -NRVS- or Nuclear
Inelastic Scattering -NIS) at the Advanced Photon Source. These measurements
were made on synthetic minerals enriched in 57Fe. A new method (i.e., the
general moment approach) is presented to calculate {\beta}-factors from the
moments of the NRIXS spectrum S(E). The first term in the moment expansion
controls iron isotopic fractionation at high temperature and corresponds to the
mean force constant of the iron bonds, a quantity that is readily measured and
often reported in NRIXS studies.Comment: 38 pages, 2 tables, 8 figures. In press at Geochimica et Cosmochimica
Acta. Appendix C contains new derivations relating the moments of the iron
PDOS to the moments of the excitation probability function measured in
Nuclear Resonant Inelastic X-ray Scatterin
Improved Bounds on Quantum Learning Algorithms
In this article we give several new results on the complexity of algorithms
that learn Boolean functions from quantum queries and quantum examples.
Hunziker et al. conjectured that for any class C of Boolean functions, the
number of quantum black-box queries which are required to exactly identify an
unknown function from C is ,
where is a combinatorial parameter of the class C. We
essentially resolve this conjecture in the affirmative by giving a quantum
algorithm that, for any class C, identifies any unknown function from C using
quantum black-box
queries.
We consider a range of natural problems intermediate between the exact
learning problem (in which the learner must obtain all bits of information
about the black-box function) and the usual problem of computing a predicate
(in which the learner must obtain only one bit of information about the
black-box function). We give positive and negative results on when the quantum
and classical query complexities of these intermediate problems are
polynomially related to each other.
Finally, we improve the known lower bounds on the number of quantum examples
(as opposed to quantum black-box queries) required for -PAC
learning any concept class of Vapnik-Chervonenkis dimension d over the domain
from to . This new lower bound comes
closer to matching known upper bounds for classical PAC learning.Comment: Minor corrections. 18 pages. To appear in Quantum Information
Processing. Requires: algorithm.sty, algorithmic.sty to buil
Systematic X-ray absorption study of hole doping in BSCCO - phases
X-ray absorption spectroscopy (XAS) on the O 1s threshold was applied to
Bi-based, single crystalline high temperature superconductors (HTc's), whose
hole densities in the CuO2 planes was varied by different methods. XAS gives
the intensity of the so-called pre-peak of the O 1s line due to the unoccupied
part of the Zhang-Rice (ZR) singlet state. The effects of variation of the
number n of CuO2 - planes per unit cell (n = 1,2,3) and the effect of
La-substitution for Sr for the n = 1 and n = 2 phase were studied
systematically. Furthermore the symmetry of the states could be probed by the
polarization of the impinging radiation.Comment: 4 pages, 2 figures, to appear in the proceedings of SCES2001, Ann
Arbor, August 6-10, 200
Temperature and Pressure Dependence of the Fe-specific Phonon Density of States in Ba(Fe(1-x)Co(x))2As2
The {57}Fe-specific phonon density of states of Ba(Fe(1-x)Co(x))2As2 single
crystals (x=0.0, 0.08) was measured at cryogenic temperatures and at high
pressures with nuclear-resonant inelastic x-ray scattering. Measurements were
conducted for two different orientations of the single crystals, yielding the
orientation-projected {57}Fe-phonon density of states (DOS) for phonon
polarizations in-plane and out-of-plane with respect to the basal plane of the
crystal structure. In the tetragonal phase at 300 K, a clear stiffening was
observed upon doping with Co. Increasing pressure to 4 GPa caused a marked
increase of phonon frequencies, with the doped material still stiffer than the
parent compound. Upon cooling, both the doped and undoped samples showed a
stiffening, and the parent compound exhibited a discontinuity across the
magnetic and structural phase transition. These findings are generally
compatible with the changes in volume of the system upon doping, increasing
pressure, or increasing temperature, but an extra softening of high-energy
modes occurs with increasing temperature. First-principles computations of the
phonon DOS were performed and showed an overall agreement with the experimental
results, but underestimate the Grueneisen parameter. This discrepancy is
explained in terms of a magnetic Grueneisen parameter, causing an extra phonon
stiffening as magnetism is suppressed under pressure
Temperature and pressure dependence of the Fe-specific phonon density of states in Ba(Fe_(1−x)Co_x)_2As_2
The ^(57)Fe-specific phonon density of states (DOS) of Ba(Fe_(1−x)Co_x)_2As_2 single crystals (x=0.0,0.08) was measured at cryogenic temperatures and at high pressures with nuclear-resonant inelastic x-ray scattering. Measurements were conducted for two different orientations of the single crystals, yielding the orientation-projected ^(57)Fe-phonon density of states for phonon polarizations in-plane and out-of-plane with respect to the basal plane of the crystal structure. In the tetragonal phase at 300 K, a clear stiffening was observed upon doping with Co. Increasing pressure to 4 GPa caused a marked increase of phonon frequencies, with the doped material still stiffer than the parent compound. Upon cooling, both the doped and undoped samples showed a stiffening and the parent compound exhibited a discontinuity across the magnetic and structural phase transitions. These findings are generally compatible with the changes in volume of the system upon doping, increasing pressure, or increasing temperature, but an extra softening of high-energy modes occurs with increasing temperature. First-principles computations of the phonon DOS were performed and showed an overall agreement with the experimental results, but underestimate the Grüneisen parameter. This discrepancy is explained in terms of a magnetic Grüneisen parameter, causing an extra phonon stiffening as magnetism is suppressed under pressure
Influence of Magnetism on Phonons in CaFe2As2 Via Inelastic X-ray Scattering
In the iron pnictides, the strong sensitivity of the iron magnetic moment to
the arsenic position suggests a significant relationship between phonons and
magnetism. We measured the phonon dispersion of several branches in the high
temperature tetragonal phase of CaFe2As2 using inelastic x-ray scattering on
single-crystal samples. These measurements were compared to ab initio
calculations of the phonons. Spin polarized calculations imposing the
antiferromagnetic order present in the low temperature orthorhombic phase
dramatically improve agreement between theory and experiment. This is discussed
in terms of the strong antiferromagnetic correlations that are known to persist
in the tetragonal phase.Comment: 4 pages, 3 figures; added additional information and references about
spin fluctuation
Video enhancement using adaptive spatio-temporal connective filter and piecewise mapping
This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC) noise filter and an adaptive piecewise mapping function (APMF). For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises - Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results
Electronic Structures of an [Fe(NNR_2)]^(+/0/–) Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation
The intermediacy of metal–NNH_2 complexes has been implicated in the catalytic cycles of several examples of transition-metal-mediated nitrogen (N_2) fixation. In this context, we have shown that triphosphine-supported Fe(N_2) complexes can be reduced and protonated at the distal N atom to yield Fe(NNH_2) complexes over an array of charge and oxidation states. Upon exposure to further H^+/e^– equivalents, these species either continue down a distal-type Chatt pathway to yield a terminal iron(IV) nitride or instead follow a distal-to-alternating pathway resulting in N–H bond formation at the proximal N atom. To understand the origin of this divergent selectivity, herein we synthesize and elucidate the electronic structures of a redox series of Fe(NNMe_2) complexes, which serve as spectroscopic models for their reactive protonated congeners. Using a combination of spectroscopies, in concert with density functional theory and correlated ab initio calculations, we evidence one-electron redox noninnocence of the “NNMe_2” moiety. Specifically, although two closed-shell configurations of the “NNR_2” ligand have been commonly considered in the literature—isodiazene and hydrazido(2−)—we provide evidence suggesting that, in their reduced forms, the present iron complexes are best viewed in terms of an open-shell [NNR_2]^•–ligand coupled antiferromagnetically to the Fe center. This one-electron redox noninnocence resembles that of the classically noninnocent ligand NO and may have mechanistic implications for selectivity in N_2 fixation activity
- …
