652 research outputs found
B Leptonic Decays and B- bar B Mixing with 2+1 Flavors of Dynamical Quarks
Calculations of B leptonic decays and B- bar B mixing using NRQCD heavy and
Asqtad light valence quarks on the MILC dynamical configurations are described.
Smearing has been implemented to substantially reduce the statistical errors of
the matrix elements needed for the determination of f_B. The four-fermion
matrix elements needed for the determination of f_{B_s}^2B_{B_s} have been
calculated and a preliminary result is given.Comment: 3 pages, 3 figures, talk given at Lattice2004(heavy), Batavia,
Illinois, 21-26 Jun 200
Thermal-vacuum test report for the ultraviolet spectrometer thermal model
Early design studies showed that the UV spectrometer thermal design margins were very small so that an experimental confirmation of the analytical model would be desirable. At that time the prototype unit was scheduled too far downstream to be of value, so a separate thermal model was built for use in verifying the analytical model
Heavy-Light Meson Semileptonic Decays with Staggered Light Quarks
We report on exploratory studies of heavy-light meson semileptonic decays
using Asqtad light quarks, NRQCD heavy quarks and Symanzik improved glue on
coarse quenched lattices. Oscillatory contributions to three-point correlators
coming from the staggered light quarks are found to be handled well by Bayesian
fitting methods. B meson decays to both the Goldstone pion and to one of the
point-split non-Goldstone pions are investigated. One-loop perturbative
matching of NRQCD/Asqtad heavy-light currents is incorporated.Comment: 3 pages, 3 postscript figures, Lattice2003(heavy
Recommended from our members
Workshop on advances in smooth particle hydrodynamics
This proceedings contains viewgraphs presented at the 1993 workshop held at Los Alamos National Laboratory. Discussed topics include: negative stress, reactive flow calculations, interface problems, boundaries and interfaces, energy conservation in viscous flows, linked penetration calculations, stability and consistency of the SPH method, instabilities, wall heating and conservative smoothing, tensors, tidal disruption of stars, breaking the 10,000,000 particle limit, modelling relativistic collapse, SPH without H, relativistic KSPH avoidance of velocity based kernels, tidal compression and disruption of stars near a supermassive rotation black hole, and finally relativistic SPH viscosity and energy
B Physics on the Lattice: Present and Future
Recent experimental measurements and lattice QCD calculations are now
reaching the precision (and accuracy) needed to over-constrain the CKM
parameters and . In this brief review, I discuss the
current status of lattice QCD calculations needed to connect the experimental
measurements of meson properties to quark flavor-changing parameters.
Special attention is given to , which is becoming a competitive
way to determine , and to mixings, which now include
reliable extrapolation to the physical light quark mass. The combination of the
recent measurement of the mass difference and current lattice
calculations dramatically reduces the uncertainty in . I present an
outlook for reducing dominant lattice QCD uncertainties entering CKM fits, and
I remark on lattice calculations for other decay channels.Comment: Invited brief review for Mod. Phys. Lett. A. 15 pages. v2: typos
corrected, references adde
Properties of the a1 Meson from Lattice QCD
We determine the mass and decay constant of the meson using Monte Carlo
simulation of lattice QCD. We find MeV and , in good agreement with experiment.Comment: 9 page uu-encoded compressed postscript file. version appearing in
Phys. Rev. Lett. 74 (1995) 459
One-Loop Matching of the Heavy-Light A_0 and V_0 Currents with NRQCD Heavy and Improved Naive Light Quarks
One-loop matching of heavy-light currents is carried out for a highly
improved lattice action, including the effects of dimension 4 O(1/M) and O(a)
operators. We use the NRQCD action for heavy quarks, the Asqtad improved naive
action for light quarks, and the Symanzik improved glue action. As part of the
matching procedure we also present results for the NRQCD self energy and for
massless Asqtad quark wavefunction renormalization with improved glue.Comment: 25 pages, 3 eps-figure
Orbitally excited and hybrid mesons from the lattice
We discuss in general the construction of gauge-invariant non-local meson
operators on the lattice. We use such operators to study the - and -wave
mesons as well as hybrid mesons in quenched QCD, with quark masses near the
strange quark mass. The resulting spectra are compared with experiment for the
orbital excitations. For the states produced by gluonic excitations (hybrid
mesons) we find evidence of mixing for non-exotic quantum numbers. We give
predictions for masses of the spin-exotic hybrid mesons with $J^{PC}=1^{-+},\
0^{+-}2^{+-}$.Comment: 31 pages, LATEX, 8 postscript figures. Reference adde
The B_s and D_s decay constants in 3 flavor lattice QCD
Capitalizing on recent advances in lattice QCD, we present a calculation of
the leptonic decay constants f_{B_s} and f_{D_s} that includes effects of one
strange sea quark and two light sea quarks. The discretization errors of
improved staggered fermion actions are small enough to simulate with 3
dynamical flavors on lattices with spacings around 0.1 fm using present
computer resources. By shedding the quenched approximation and the associated
lattice scale ambiguity, lattice QCD greatly increases its predictive power.
NRQCD is used to simulate heavy quarks with masses between 1.5 m_c and m_b. We
arrive at the following results: f_{B_s} = 260 \pm 7 \pm 26 \pm 8 \pm 5 MeV and
f_{D_s} = 290 \pm 20 \pm 29 \pm 29 \pm 6 MeV. The first quoted error is the
statistical uncertainty, and the rest estimate the sizes of higher order terms
neglected in this calculation. All of these uncertainties are systematically
improvable by including another order in the weak coupling expansion, the
nonrelativistic expansion, or the Symanzik improvement program.Comment: 4 page
- …