29,341 research outputs found

    Piecewise adiabatic population transfer in a molecule via a wave packet

    Full text link
    We propose a class of schemes for robust population transfer between quantum states that utilize trains of coherent pulses and represent a generalized adiabatic passage via a wave packet. We study piecewise Stimulated Raman Adiabatic Passage with pulse-to-pulse amplitude variation, and piecewise chirped Raman passage with pulse-to-pulse phase variation, implemented with an optical frequency comb. In the context of production of ultracold ground-state molecules, we show that with almost no knowledge of the excited potential, robust high-efficiency transfer is possibleComment: 4 pages, 5 figures. Submitted to Phys. Rev. Let

    Quantum corrections to gravity and their implications for cosmology and astrophysics

    Full text link
    The quantum contributions to the gravitational action are relatively easy to calculate in the higher derivative sector of the theory. However, the applications to the post-inflationary cosmology and astrophysics require the corrections to the Einstein-Hilbert action and to the cosmological constant, and those we can not derive yet in a consistent and safe way. At the same time, if we assume that these quantum terms are covariant and that they have relevant magnitude, their functional form can be defined up to a single free parameter, which can be defined on the phenomenological basis. It turns out that the quantum correction may lead, in principle, to surprisingly strong and interesting effects in astrophysics and cosmology.Comment: 15 pages, LaTeX, WS style, contribution to the Proceedings of the QFEXT-2011 conference in the Centro de Ciencias de Benasque Pedro Pasqual, Spai

    Pulsed Adiabatic Photoassociation via Scattering Resonances

    Full text link
    We develop the theory for the Adiabatic Raman Photoassociation (ARPA) of ultracold atoms to form ultracold molecules in the presence of scattering resonances. Based on a computational method in which we replace the continuum with a discrete set of "effective modes", we show that the existence of resonances greatly aids in the formation of deeply bound molecular states. We illustrate our general theory by computationally studying the formation of 85^{85}Rb2_2 molecules from pairs of colliding ultracold 85^{85}Rb atoms. The single-event transfer yield is shown to have a near-unity value for wide resonances, while the ensemble-averaged transfer yield is shown to be higher for narrow resonances. The ARPA yields are compared with that of (the experimentally measured) "Feshbach molecule" magneto-association. Our findings suggest that an experimental investigation of ARPA at sub-ÎĽ\muK temperatures is warranted.Comment: 20 pages, 11 figure

    Nonlinearity and pixel shifting effects in HXRG infrared detectors

    Get PDF
    We study the nonlinearity (NL) in the conversion from charge to voltage in infrared detectors (HXRG) for use in precision astronomy. We present laboratory measurements of the NL function of a H2RG detector and discuss the accuracy to which it would need to be calibrated in future space missions to perform cosmological measurements through the weak gravitational lensing technique. In addition, we present an analysis of archival data from the infrared H1RG detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides evidence consistent with the existence of a sensor effect analogous to the brighter-fatter effect found in Charge-Coupled Devices. We propose a model in which this effect could be understood as shifts in the effective pixel boundaries, and discuss prospects of laboratory measurements to fully characterize this effect.Comment: Accepted for publication in the Journal of Instrumentation (JINST). Part of "Precision Astronomy with Fully Depleted CCDs" (Dec 1-2, 2016), Brookhaven National Laboratory, Upton, NY, US

    Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry

    Get PDF
    We perform a numerical study of the critical regime at the threshold of black hole formation in the spherically symmetric, general relativistic collapse of collisionless matter. The coupled Einstein-Vlasov equations are solved using a particle-mesh method in which the evolution of the phase-space distribution function is approximated by a set of particles (or, more precisely, infinitesimally thin shells) moving along geodesics of the spacetime. Individual particles may have non-zero angular momenta, but spherical symmetry dictates that the total angular momentum of the matter distribution vanish. In accord with previous work by Rein et al, our results indicate that the critical behavior in this model is Type I; that is, the smallest black hole in each parametrized family has a finite mass. We present evidence that the critical solutions are characterized by unstable, static spacetimes, with non-trivial distributions of radial momenta for the particles. As expected for Type I solutions, we also find power-law scaling relations for the lifetimes of near-critical configurations as a function of parameter-space distance from criticality.Comment: 32 pages, 10 figure

    Vacuum effective action and inflation

    Get PDF
    We consider vacuum quantum effects in the Early Universe, which may lead to inflation. The inflation is a direct consequence of the supposition that, at high energies, all the particles can be described by the weakly interacting, massless, conformally invariant fields. We discuss, from the effective field theory point of view, the stability of inflation, transition to the FRW solution, and also possibility to study metric and density perturbations.Comment: 6 pages, LaTeX, no figures. Contribution to the Proceedings of the X Jorge Andre Swieca school in Particles and Fields. To be published in World Scientifi

    Complete transfer of populations from a single state to a pre-selected superposition of states using Piecewise Adiabatic Passage

    Full text link
    We develop a method for executing robust and selective transfer of populations between a single level and pre-selected superpositions of energy eigenstates. Viewed in the frequency domain, our method amounts to executing a series of simultaneous adiabatic passages into each component of the target superposition state. Viewed in {the} time domain, the method works by accumulating the wavefunction of the target wave packet as it revisits the Franck Condon region, in what amounts to an extension of the Piecewise Adiabatic Passage technique [ Shapiro et.al., Phys. Rev. Lett. 99, 033002 (2007)] to the multi-state regime. The viability of the method is verified by performing numerical tests for the Na_2 molecule.Comment: 8 pages, 4 figure

    Heat capacity of the site-diluted spin dimer system Ba3(Mn1-xVx)2O8

    Full text link
    Heat capacity and susceptibility measurements have been performed on the diluted spin dimer compound Ba3(Mn1-xVx)2O8. The parent compound Ba3Mn2O8 is a spin dimer system based on pairs of antiferromagnetically coupled S = 1, 3d2 Mn5+ ions such that the zero field groundstate is a product of singlets. Substitution of non-magnetic S = 0, 3d0 V5+ ions leads to an interacting network of unpaired Mn moments, the low temperature properties of which are explored in the limit of small concentrations, 0<x<0.05. The zero-field heat capacity of this diluted system reveals a progressive removal of magnetic entropy over an extended range of temperatures, with no evidence for a phase transition. The concentration dependence does not conform to expectations for a spin glass state. Rather, the data suggest a low temperature random singlet phase, reflecting the hierarchy of exchange energies found in this system.Comment: Full Publication Citation Include
    • …
    corecore