64,660 research outputs found
Mind Over Matter: A Qualitative Examination of the Coping Resources Used by Women with Cancer
Aim: This exploratory study investigates the coping resources used by six women diagnosed with cancer.
Objective: The purpose of this study was to provide these women with the opportunity to discuss their cancer experiences along with the specific coping methods they found to be helpful throughout their journey.
Methods: The participants, ranging in age from 25 to 63, completed a background questionnaire, followed by either a semi-structured interview (n=3) or an interview via written response (n=3).
Results: Several key coping methods were described as being helpful to these women, and these methods fell into three major categories: intrapersonal, interpersonal, and extrapersonal coping resources. Although each of these resource categories had a direct influence on overall well-being itself, the interpersonal and extrapersonal resources also influenced the intrapersonal category, offering an alternate means by which they could influence overall well-being. These findings highlight the many coping resources used by these women when navigating their cancer journey
Surface waves in protoplanetary disks induced by outbursts: Concentric rings in scattered light
Context: Vertically hydrostatic protoplanetary disk models are based on the
assumption that the main heating source, stellar irradiation, does not vary
much with time. However, it is known that accreting young stars are variable
sources of radiation. This is particularly evident for outbursting sources such
as EX Lupi and FU Orionis stars. Aim: We investigate how such outbursts affect
the vertical structure of the outer regions of the protoplanetary disk, in
particular their appearance in scattered light at optical and near-infrared
wavelengths. Methods: We employ the 3D FARGOCA radiation-hydrodynamics code, in
polar coordinates, to compute the time-dependent behavior of the axisymmetric
disk structure. The outbursting inner disk region is not included explicitly.
Instead, its luminosity is added to the stellar luminosity and is thus included
in the irradiation of the outer disk regions. For time snapshots of interest we
insert the density structure into the RADMC-3D radiative transfer code and
compute the appearance of the disk at optical/near-infrared wavelengths.
Results: We find that, depending on the amplitude of the outbursts, the
vertical structure of the disk can become highly dynamic, featuring circular
surface waves of considerable amplitude. These "hills" and "valleys" on the
disk's surface show up in the scattered light images as bright and dark
concentric rings. Initially these rings are small and act as standing waves,
but they subsequently lead to outward propagating waves, like the waves
produced by a stone thrown into a pond. These waves continue long after the
actual outburst has died out. Conclusions: We propose that some of the
multi-ringed structures seen in optical/infrared images of several
protoplanetary disks may have their origin in outbursts that occurred decades
or centuries ago.Comment: Accepted for publication in A&A Letter
The 3-Loop Non-Singlet Heavy Flavor Contributions to the Structure Function g_1(x,Q^2) at Large Momentum Transfer
We calculate the massive flavor non-singlet Wilson coefficient for the heavy
flavor contributions to the polarized structure function in the
asymptotic region to 3-loop order in Quantum Chromodynamics at
general values of the Mellin variable and the momentum fraction , and
derive heavy flavor corrections to the Bjorken sum-rule. Numerical results are
presented for the charm quark contribution. Results on the structure function
in the twist-2 approximation are also given.Comment: 29 pages, 8 Figure
A foam model highlights the differences of the macro- and microrheology of respiratory horse mucus
Native horse mucus is characterized with micro- and macrorheology and
compared to hydroxyethylcellulose (HEC) gel as a model. Both systems show
comparable viscoelastic properties on the microscale and for the HEC the
macrorheology is in good agreement with the microrheology. For the mucus, the
viscoelastic moduli on the macroscale are several orders of magnitude larger
than on the microscale. Large amplitude oscillatory shear experiments show that
the mucus responds nonlinearly at much smaller deformations than HEC. This
behavior fosters the assumption that the mucus has a foam like structure on the
microscale compared to the typical mesh like structure of the HEC, a model that
is supported by cryogenic-scanning-electron-microscopy (CSEM) images. These
images allow also to determine the relative amount of volume that is occupied
by the pores and the scaffold. Consequently, we can estimate the elastic
modulus of the scaffold. We conclude that this particular foam like
microstructure should be considered as a key factor for the transport of
particulate matter which plays a central role in mucus function with respect to
particle penetration. The mesh properties composed of very different components
are responsible for macroscopic and microscopic behavior being part of
particles fate after landing.Comment: Accepted for publication in the Journal of the Mechanical Behavior of
Biomedical Material
The Three Loop Two-Mass Contribution to the Gluon Vacuum Polarization
We calculate the two-mass contribution to the 3-loop vacuum polarization of
the gluon in Quantum Chromodynamics at virtuality for general masses
and also present the analogous result for the photon in Quantum
Electrodynamics.Comment: 5 pages Late
Direct Detection of Giant Close-In Planets Around the Source Stars of Caustic-Crossing Microlensing Events
We propose a direct method to detect close-in giant planets orbiting stars in
the Galactic bulge. This method uses caustic-crossing binary microlensing
events discovered by survey teams monitoring the bulge to measure light from a
planet orbiting the source star. When the planet crosses the caustic, it is
more magnified than the source star; its light is magnified by two orders of
magnitude for Jupiter size planets. If the planet is a giant close to the star,
it may be bright enough to make a significant deviation in the light curve of
the star. Detection of this deviation requires intensive monitoring of the
microlensing light curve using a 10-meter class telescope for a few hours after
the caustic. This is the only method yet proposed to directly detect close-in
planets around stars outside the solar neighborhood.Comment: 4 pages, 2 figures. Submitted to ApJ Letter
- …