936 research outputs found

    Comparing Line and HR Executives’ Perceptions of HR Effectiveness: Services, Roles, and Contributions

    Get PDF
    This study compared HR and line executives’ evaluations of the effectiveness of the HR function in terms of its service delivery, roles, and contributions to the firm. Survey responses from 44 HR and 59 line executives from 14 companies indicated that (a) HR executives consistently rated the functions effectiveness higher than did line executives, and (b) the greatest differences were observed on the more important and/or strategic aspects of HR. Implications are discussed

    Measurement Error in Research on Human Resource Decisions and Firm Performance: How Much Error is There and How Does its Influence Effect Size Estimates?

    Get PDF
    Recent empirical research finds that the relationship between human resource (HR) decisions and firm performance is significant in both statistical and practical terms. However, the typical research design in this area relies upon on a single respondent to validly assess firmwide HR practices. To date, no study has adequately addressed the reliability of such measures, a basic requirement of construct validity. Previous efforts have either defined reliability so narrowly as to miss a major source of measurement error (raters) or have estimated the unreliability due to raters using incorrect methods. In both cases, the result is upwardly biased estimates of reliability. We estimate reliabilities using intraclass correlation and generalizability coefficients. Our reliability estimates suggest substantial measurement error in the types of HR effectiveness and HR practice measures typically used to predict firm performance. We discuss how this degree of measurement influences research and policy implications

    Periodic Anderson model with electron-phonon correlated conduction band

    Get PDF
    This paper reports dynamical mean field calculations for the periodic Anderson model in which the conduction band is coupled to phonons. Motivated in part by recent attention to the role of phonons in the γ\gamma-α\alpha transition in Ce, this model yields a rich and unexpected phase diagram which is of intrinsic interest. Specifically, above a critical value of the electron-phonon interaction, a first order transition with two coexisting phases develops in the temperature-hybridization plane, which terminates at a second order critical point. The coexisting phases display the familiar Kondo screened and local moment character, yet they also exhibit pronounced polaronic and bipolaronic properties, respectively.Comment: 4 pages, 6 figure

    Compliant morphing structures from twisted bulk metallic glass ribbons

    Get PDF
    In this work, we investigate the use of pre-twisted metallic ribbons as building blocks for shape-changing structures. We manufacture these elements by twisting initially flat ribbons about their (lengthwise) centroidal axis into a helicoidal geometry, then thermoforming them to make this configuration a stress-free reference state. The helicoidal shape allows the ribbons to have preferred bending directions that vary throughout their length. These bending directions serve as compliant joints and enable several deployed and stowed configurations that are unachievable without pre-twist, provided that compaction does not induce material failure. We fabricate these ribbons using a bulk metallic glass (BMG), for its exceptional elasticity and thermoforming attributes. Combining numerical simulations, an analytical model based on a geometrically nonlinear plate theory and torsional experiments, we analyze the finite-twisting mechanics of various ribbon geometries. We find that, in ribbons with undulated edges, the twisting deformations can be better localized onto desired regions prior to thermoforming. Finally, we join multiple ribbons to create deployable systems with complex morphing attributes enabled by the intrinsic chirality of our twisted structural elements. Our work proposes a framework for creating fully metallic, yet compliant structures that may find application as elements for space structures and compliant robots

    An efficient algorithm for learning with semi-bandit feedback

    Full text link
    We consider the problem of online combinatorial optimization under semi-bandit feedback. The goal of the learner is to sequentially select its actions from a combinatorial decision set so as to minimize its cumulative loss. We propose a learning algorithm for this problem based on combining the Follow-the-Perturbed-Leader (FPL) prediction method with a novel loss estimation procedure called Geometric Resampling (GR). Contrary to previous solutions, the resulting algorithm can be efficiently implemented for any decision set where efficient offline combinatorial optimization is possible at all. Assuming that the elements of the decision set can be described with d-dimensional binary vectors with at most m non-zero entries, we show that the expected regret of our algorithm after T rounds is O(m sqrt(dT log d)). As a side result, we also improve the best known regret bounds for FPL in the full information setting to O(m^(3/2) sqrt(T log d)), gaining a factor of sqrt(d/m) over previous bounds for this algorithm.Comment: submitted to ALT 201

    Zero-temperature generalized phase diagram of the 4d transition metals under pressure

    Full text link
    We use an accurate implementation of density functional theory (DFT) to calculate the zero-temperature generalized phase diagram of the 4dd series of transition metals from Y to Pd as a function of pressure PP and atomic number ZZ. The implementation used is full-potential linearized augmented plane waves (FP-LAPW), and we employ the exchange-correlation functional recently developed by Wu and Cohen. For each element, we obtain the ground-state energy for several crystal structures over a range of volumes, the energy being converged with respect to all technical parameters to within ∼1\sim 1 meV/atom. The calculated transition pressures for all the elements and all transitions we have found are compared with experiment wherever possible, and we discuss the origin of the significant discrepancies. Agreement with experiment for the zero-temperature equation of state is generally excellent. The generalized phase diagram of the 4dd series shows that the major boundaries slope towards lower ZZ with increasing PP for the early elements, as expected from the pressure induced transfer of electrons from spsp states to dd states, but are almost independent of PP for the later elements. Our results for Mo indicate a transition from bcc to fcc, rather than the bcc-hcp transition expected from spsp-dd transfer.Comment: 28 pages and 10 figures. Submitted to Phys. Rev.

    Spectral Properties of delta-Plutonium: Sensitivity to 5f Occupancy

    Full text link
    By combining the local density approximation (LDA) with dynamical mean field theory (DMFT), we report a systematic analysis of the spectral properties of δ\delta-plutonium with varying 5f5f occupancy. The LDA Hamiltonian is extracted from a tight-binding (TB) fit to full-potential linearized augmented plane-wave (FP-LAPW) calculations. The DMFT equations are solved by the exact quantum Monte Carlo (QMC) method and the Hubbard-I approximation. We have shown for the first time the strong sensitivity of the spectral properties to the 5f5f occupancy, which suggests using this occupancy as a fitting parameter in addition to the Hubbard UU. By comparing with PES data, we conclude that the ``open shell'' 5f55f^{5} configuration gives the best agreement, resolving the controversy over 5f5f ``open shell'' versus ``close shell'' atomic configurations in δ\delta-Pu.Comment: 6 pages, 2 embedded color figures, to appear in Physical Review
    • …
    corecore