50 research outputs found

    Observation of thermally activated glassiness and memory dip in a-NbSi insulating thin films

    Full text link
    We present electrical conductance measurements on amorphous NbSi insulating thin films. These films display out-of equilibrium electronic features that are markedly different from what has been reported so far in disordered insulators. Like in the most studied systems (indium oxide and granular Al films), a slow relaxation of the conductance is observed after a quench to liquid helium temperature which gives rise to the growth of a memory dip in MOSFET devices. But unlike in these systems, this memory dip and the related conductance relaxations are still visible up to room temperature, with clear signatures of a temperature dependent dynamics

    Destruction of superconductivity in disordered materials : a dimensional crossover

    Full text link
    The disorder-induced Superconductor-to-Insulator Transition in amorphous Nbx_{x}Si1x_{1-x} two-dimensional thin films is studied for different niobium compositions xx through a variation of the sample thickness dd. We show that the critical thickness dcd_c, separating a superconducting regime from an insulating one, increases strongly with diminishing xx, thus attaining values of over 100 {\AA}. The corresponding phase diagram in the (d,x)(d, x) plane is inferred and related to the three-dimensional situation. The two-dimensional Superconductor-to-Insulator Transition well connects with the three-dimensional Superconductor-to-Metal Transition

    Effect of annealing on the superconducting properties of a-Nb(x)Si(1-x) thin films

    Full text link
    a-Nb(x)Si(1-x) thin films with thicknesses down to 25 {\AA} have been structurally characterized by TEM (Transmission Electron Microscopy) measurements. As-deposited or annealed films are shown to be continuous and homogeneous in composition and thickness, up to an annealing temperature of 500{\deg}C. We have carried out low temperature transport measurements on these films close to the superconductor-to-insulator transition (SIT), and shown a qualitative difference between the effect of annealing or composition, and a reduction of the film thickness on the superconducting properties of a-NbSi. These results question the pertinence of the sheet resistance R_square as the relevant parameter to describe the SIT.Comment: 9 pages, 12 figure

    A length scale for the superconducting Nernst signal above Tc_{c} in Nb0.15_{0.15}Si0.85_{0.85}

    Full text link
    We present a study of the Nernst effect in amorphous superconducting thin films of Nb0.15_{0.15}Si0.85_{0.85}. The field dependence of the Nernst coefficient above Tc_{c} displays two distinct regimes separated by a field scale set by the Ginzburg-Landau correlation length. A single function F(ξ)F(\xi), with the correlation length as its unique argument set either by the zero-field correlation length (in the low magnetic field limit) or by the magnetic length (in the opposite limit), describes the Nernst coefficient. We conclude that the Nernst signal observed on a wide temperature (30×Tc30 \times T_c) and field (4×Bc24 \times B_{c2}) range is exclusively generated by short-lived Cooper pairs.Comment: 4 pages, 4 figure

    Temperature-dependent transport measurements with Arduino

    Get PDF
    The current performances of single-board microcontrollers render them attractive, not only for basic applications, but also for more elaborate projects, amongst which are physics teaching or research. In this article, we show how temperature-dependent transport measurements can be performed by using an Arduino board, from cryogenic temperatures up to room temperature or above. We focus on two of the main issues for this type of experiments: the determination of the sample temperature and the measurement of its resistance. We also detail two student-led experiments: evidencing the magnetocaloric effect in Gadolinium and measuring the resistive transition of a high critical temperature superconductor

    Observation of the Nernst signal generated by fluctuating Cooper pairs

    Full text link
    Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity : an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to an untested theory, these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous superconducting films, the lifetime of Cooper pairs exceeds the elastic lifetime of quasi-particles in a wide temperature range above Tc; consequently, the Cooper pairs Nernst signal dominate the response of the normal electrons well above Tc. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be unambiguously tested. Here, we report on the observation of a Nernst signal in such a superconductor traced deep into the normal state. Since the amplitude of this signal is in excellent agreement with the theoretical prediction, the result provides the first unambiguous case for a Nernst effect produced by short-lived Cooper pairs

    Axion searches with the EDELWEISS-II experiment

    Full text link
    We present new constraints on the couplings of axions and more generic axion-like particles using data from the EDELWEISS-II experiment. The EDELWEISS experiment, located at the Underground Laboratory of Modane, primarily aims at the direct detection of WIMPs using germanium bolometers. It is also sensitive to the low-energy electron recoils that would be induced by solar or dark matter axions. Using a total exposure of up to 448 kg.d, we searched for axion-induced electron recoils down to 2.5 keV within four scenarios involving different hypotheses on the origin and couplings of axions. We set a 95% CL limit on the coupling to photons gAγ<2.13×109g_{A\gamma}<2.13\times 10^{-9} GeV1^{-1} in a mass range not fully covered by axion helioscopes. We also constrain the coupling to electrons, gAe<2.56×1011g_{Ae} < 2.56\times 10^{-11}, similar to the more indirect solar neutrino bound. Finally we place a limit on gAe×gANeff<4.70×1017g_{Ae}\times g_{AN}^{\rm eff}<4.70 \times 10^{-17}, where gANeffg_{AN}^{\rm eff} is the effective axion-nucleon coupling for 57^{57}Fe. Combining these results we fully exclude the mass range 0.91eV<mA<800.91\,{\rm eV}<m_A<80 keV for DFSZ axions and 5.73eV<mA<405.73\,{\rm eV}<m_A<40 keV for KSVZ axions
    corecore