482 research outputs found

    Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions

    Get PDF
    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H_2, CH) and triatomic (H_3, CH_2) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or linear dependence of its explicitly antisymmetrized form, the convergence of the apparently disparate atomic-product and explicitly antisymmetrized atomic-product forms to a common invariant subspace, and the nature of a chemical bonding descriptor provided by the atomic-product compositions of molecular eigenstates. Concluding remarks indicate additional studies in progress and the prognosis for performing atomic spectral-product calculations more generally and efficiently

    Bowel and Bladder-Control Anxiety: A Preliminary Description of a Viscerally-Centred Phobic Syndrome

    Get PDF
    Background: People with anxiety disorders occasionally report fears about losing control of basic bodily functions in public. These anxieties often occur in the absence of physical disorder and have previously been recognized as “obsessive” anxieties reflecting a preoccupation with loss of bowel/bladder control. Motivated by our observations of the non-trivial occurrence of such anxieties in our clinical practice we sought to fill a gap in the current understanding of “bowel/bladder-control anxieties”. Method: Eligible participants completed an internet survey. Results: Bowel/bladder-control anxieties (n=140) tended to emerge in the mid to late 20s and were associated with high levels of avoidance and functional impairment. There was a high prevalence of panic attacks (78%); these were especially prevalent among those with bowel-control anxiety. Of those with panic attacks, 62% indicated that their main concern was being incontinent during a panic attack. Significantly, a proportion of respondents (~16%) reported actually being incontinent during a panic attack. Seventy percent of participants reported intrusive imagery related to loss of bowel/bladder control. Intrusion-related distress was correlated with agoraphobic avoidance and general role impairment. Some differences were noted between those with predominantly bowel-, predominantly bladder- and those with both bowel and bladder-control anxieties. Conclusion: This preliminary characterization indicates that even in a non-treatment seeking community sample, bowel/bladder-control anxieties are associated with high levels of distress and impairment. Further careful characterization of these anxieties will clarify their phenomenology and help us develop or modify treatment protocols in a way that takes account of any special characteristics of such viscerally-centred phobic syndromes

    Photoexcitation and ionization in molecular oxygen: Theoretical studies of electronic transitions in the discrete and continuous spectral intervals

    Get PDF
    Theoretical studies of valence-electron (1πg, 1πu, 3σg) photoexcitation and ionization cross sections in molecular oxygen are reported employing separated-channel static-exchange calculations and the Stieltjes–Tchebycheff moment-theory technique. As in previously reported investigations of photoexcitation and ionization in small molecules following this approach, canonical Hartree–Fock orbitals, large Gaussian basis sets, and many-electron eigenstates of correct symmetry are used in defining appropriate noncentral static-exchange potentials and in computations of the appropriate discrete and continuum transition strengths. It is particularly important in molecular oxygen to incorporate the appropriate ionic parentages of the various photoionization multiplet states in order to obtain the correct partial-channel cross sections. The calculated discrete series associated with 1πg excitation are found to be in good agreement with available experimental assignments and previously reported theoretical studies, and the predicted states associated with 1πu and 3σg excitations are in general accord with assignments for the higher series based on spectral and quantum-defect analysis. Although the observed photoelectron spectra and photoionization cross sections are relatively complex, the calculated total vertical electronic photoabsorption cross section and the partial-channel photoionization cross sections for production of X 2πg, a 4πu, A 2πu, 2 2πu, 3 3IIu, b 4∑g-, and B 2∑g-, ionic states are found to be in good accord with recent synchrotron radiation, line-source, electron-impact, and (e,2e) dipole oscillator-strength measurements when proper account is taken of the parentages of the various multiplet states. The partial-channel cross sections exhibit resonancelike structures that can be attributed to contributions from diabatic valencelike virtual states that appear in the appropriate photoionization continua, rather that in the corresponding discrete spectral intervals. These features in the dipole spectrum of molecular oxygen are discussed and are contrasted and compared with the results of previously reported related studies in molecular nitrogen and carbon monoxide

    Ultrafast Radial Transport In A Micron‐Scale Aluminum Plasma Excited At Relativistic Intensity

    Get PDF
    Using femtosecond microscopy, we observe a thermal/ionization front expand radially at ∼108cm/s from a λ2‐size spot of an aluminum target excited at >1018W/cm2. Numerical modeling shows transport is predominantly radiative and may be initially nonlocal. © 2004 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87543/2/609_1.pd

    Large Nondipole Effects in the Angular Distributions of K-Shell Photoelectrons from Molecular Nitrogen

    Full text link
    Measurements of angular distributions of K-shell electrons photoejected from molecular nitrogen are reported which reveal large deviations at relatively low photon energies ( ħω≤500eV) from emission patterns anticipated from the dipole approximation to interactions between radiation and matter. A concomitant theoretical analysis incorporating the effects of electromagnetic retardation attributes the observed large nondipole behaviors in N2 to bond-length-dependent terms in the E1⊗(E2,M1) photoelectron emission amplitudes which are indicative of a potentially universal nondipole behavior in molecular photoionization

    Influence of fractional flow reserve on grafts patency: Systematic review and patient-level meta-analysis.

    Get PDF
    To investigate the impact of invasive functional guidance for coronary artery bypass graft surgery (CABG) on graft failure. Data on the impact of fractional flow reserve (FFR) in guiding CABG are still limited. Systematic review and individual patient data meta-analysis were performed. Primary objective was the risk of graft failure, stratified by FFR. Risk estimates are reported as odds ratios (ORs) derived from the aggregated data using random-effects models. Individual patient data were analyzed using mixed effect model to assess relationship between FFR and graft failure. This meta-analysis is registered in PROSPERO (CRD42020180444). Four prospective studies comprising 503 patients referred for CABG, with 1471 coronaries, assessed by FFR were included. Graft status was available for 1039 conduits at median of 12.0 [IQR 6.6; 12.0] months. Risk of graft failure was higher in vessels with preserved FFR (OR 5.74, 95% CI 1.71-19.29). Every 0.10 FFR units decrease in the coronaries was associated with 56% risk reduction of graft failure (OR 0.44, 95% CI 0.34 to 0.59). FFR cut-off to predict graft failure was 0.79. Surgical grafting of coronaries with functionally nonsignificant stenoses was associated with higher risk of graft failure

    Cohesive properties of alkali halides

    Full text link
    We calculate cohesive properties of LiF, NaF, KF, LiCl, NaCl, and KCl with ab-initio quantum chemical methods. The coupled-cluster approach is used to correct the Hartree-Fock crystal results for correlations and to systematically improve cohesive energies, lattice constants and bulk moduli. After inclusion of correlations, we recover 95-98 % of the total cohesive energies. The lattice constants deviate from experiment by at most 1.1 %, bulk moduli by at most 8 %. We also find good agreement for spectroscopic properties of the corresponding diatomic molecules.Comment: LaTeX, 10 pages, 1 figure, accepted by Phys. Rev.
    corecore