805 research outputs found

    Magnetic ground state and 2D behavior in pseudo-Kagome layered system Cu3Bi(SeO3)2O2Br

    Full text link
    Anisotropic magnetic properties of a layered kagome-like system Cu3Bi(SeO3)2O2Br have been studied by bulk magnetization and magnetic susceptibility measurements as well as powder and single-crystal neutron diffraction. At T_N = 27.4 K the system develops an alternating antiferromagnetic order of (ab) layers, which individually exhibit canted ferrimagnetic moment arrangement, resulting from the competing ferro- and antiferro-magnetic intralayer exchange interactions. A magnetic field B_C ~ 0.8 T applied along the c axis (perpendicular to the layers) triggers a metamagnetic transition, when every second layer flips, i.e., resulting in a ferrimagnetic structure. Significantly higher fields are required to rotate the ferromagnetic component towards the b axis (~7 T) or towards the a axis (~15 T). The estimates of the exchange coupling constants and features indicative of an XY character of this quasi-2D system are presented.Comment: 7 pages, 6 figures, final versio

    Many-spin effects in inelastic neutron scattering and electron paramagnetic resonance of molecular nanomagnets

    Full text link
    Many molecular magnetic clusters, such as single-molecule magnets, are characterized by spin ground states with defined total spin S exhibiting zero-field-splittings. In this work, the spectroscopic intensities of the transitions within the ground-state multiplet are analyzed. In particular, the effects of a mixing with higher-lying spin multiplets, which is produced by anisotropic interactions and is neglected in the standard single-spin description, are investigated systematically for the two experimental techniques of inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR), with emphasis on the former technique. The spectroscopic transition intensities are calculated analytically by constructing corresponding effective spin operators perturbationally up to second order and consequently using irreducible tensor operator techniques. Three main effects of spin mixing are observed. Firstly, a pronounced dependence of the INS intensities on the momentum transfer Q, with a typical oscillatory behavior, emerges in first order, signaling the many-spin nature of the wave functions in exchange-coupled clusters. Secondly, as compared to the results of a first-order calculation, the intensities of the transitions within the spin multiplet are affected differently by spin mixing. This allows one, thirdly, to differentiate the higher-order contributions to the cluster magnetic anisotropy which come from the single-ion ligand-field terms and spin mixing, respectively. The analytical results are illustrated by means of the three examples of an antiferromagnetic heteronuclear dimer, the Mn-[3 x 3] grid molecule, and the single-molecule magnet Mn12.Comment: 18 pages, 3 figures, REVTEX4, to appear in PR

    Direct Observation of Quantum Coherence in Single-Molecule Magnets

    Get PDF
    Direct evidence of quantum coherence in a single-molecule magnet in frozen solution is reported with coherence times as long as T2 = 630 ns. We can strongly increase the coherence time by modifying the matrix in which the single-molecule magnets are embedded. The electron spins are coupled to the proton nuclear spins of both the molecule itself and interestingly, also to those of the solvent. The clear observation of Rabi oscillations indicates that we can manipulate the spin coherently, an essential prerequisite for performing quantum computations.Comment: 5 Pages, 4 Figures, final version published in PR

    Aza- and Mixed Thia/Aza-Macrocyclic Receptors with Quinoline-Bearing Pendant Arms for Optical Discrimination of Zinc(II) or Cadmium(II) Ions

    Get PDF
    The synthesis and coordination properties of two fluorescent chemosensors, featuring [9]aneN3 (1,4,7-triazacyclononane; L1) and [12]aneNS3 (1-aza-4,7,10-trithiacyclododecane; L2) as receptor units, and a quinoline pendant arm with an amide group as a functional group spacer are described. The optical responses of L1 and L2 in the presence of several metal ions were analysed in MeCN/H2O (1 : 4 v/v) solutions. A selective chelation enhancement of fluorescence (CHEF) effect was observed in the presence of Zn2+ in the case of L1, and in the presence of Cd2+ in the case of L2, following the formation of a 1 : 1 and a 1 : 2 metal/ligand complex, respectively, which was also confirmed by potentiometric measurements. 1H and 13C NMR measurements in CD3CN/CDCl3 in combination with molecular mechanics calculations show that for both complexes of L1 and L2 with Zn2+ and Cd2+, respectively, the coordination of the carbonyl group from the pendant arm could be the origin of the observed optical selectivity

    Intercalation of Zn(II) and Cu(II) complexes of the cyclic polyamine Neotrien into DNA: equilibria and kinetics

    Get PDF
    The equilibria and kinetics of the interaction of the Zn(II) and Cu(II) complexes of the macrocyclic polyamine 2,5,8,11-tetraaza[12]-[12](2,9)[1,10]-phenanthrolinophane (Neotrien) with calf thymus DNA have been investigated at pH = 7.0 and T = 25 degreesC by spectrophotometry, spectrofluorimetry and stopped-flow method. At low dye/polymer ratios both complexes bind to DNA according to the excluded site model. At high dye/polymer ratios the binding displays cooperative features. The logarithm of the binding constant depends linearly on - log[NaCl]. The kinetic results suggest the D + S reversible arrow D, S reversible arrow DS mechanism where the metal complexes (D) react with the DNA sites (S) leading to fast formation of an externally bound form (D, S) which, in turn, is converted into internally bound complex (DS) by intercalation. The binding constants, evaluated as ratios of rate constants, agree with those obtained from equilibrium binding experiments, thus confirming the validity of the proposed model. Fluorescence titrations, where the metal-Neotrien complexes were added to DNA previously saturated with ethidium bromide (EB), show that both complexes displace EB from the DNA cavities. The reverse process, i.e. the addition of excess ethidium to the DNA/metal Neotrien systems, leads to fluorescence recovery for DNA/ZnNeotrien but not for DNA/CuNeotrien. This observation suggests that the binding of CuNeotrien induces deep alterations in the DNA structure. Experiments with Poly(dA-dT) . Poly(dA-dT) and Poly(dG-dC) . Poly(dG-dC) reveal that CuNeotrien mainly affects the structure of the latter polynucleotide. (C) 2004 Elsevier Inc. All rights reserved

    Colorimetric response to anions by a "robust" copper(II) complex of a [9]aneN3 pendant arm derivative: CN- and I- selective sensing

    Get PDF
    The 1 : 1 complex [Cu(L)](BF4)2MeCN (1) of the tetradentate ligand 1-(2-quinolinylmethyl)-1,4,7-triazacyclononane (L) selectively changes its colour in the presence of CN in H2O and MeCN (without undergoing decomplexation from the macrocyclic ligand). The same complex in MeCN assumes different colours in the presence of CN or I

    Field-induced level crossings in spin clusters: Thermodynamics and magneto-elastic instability

    Full text link
    Quantum spin clusters with dominant antiferromagnetic Heisenberg exchange interactions typically exhibit a sequence of field-induced level crossings in the ground state as function of magnetic field. For fields near a level crossing, the cluster can be approximated by a two-level Hamiltonian at low temperatures. Perturbations, such as magnetic anisotropy or spin-phonon coupling, sensitively affect the behavior at the level-crossing points. The general two-level Hamiltonian of the spin system is derived in first-order perturbation theory, and the thermodynamic functions magnetization, magnetic torque, and magnetic specific heat are calculated. Then a magneto-elastic coupling is introduced and the effective two-level Hamilitonian for the spin-lattice system derived in the adiabatic approximation of the phonons. At the level crossings the system becomes unconditionally unstable against lattice distortions due to the effects of magnetic anisotropy. The resultant magneto-elastic instabilities at the level crossings are discussed, as well as the magnetic behavior.Comment: 13 pages, 8 figures, REVTEX

    Heisenberg exchange parameters of molecular magnets from the high-temperature susceptibility expansion

    Full text link
    We provide exact analytical expressions for the magnetic susceptibility function in the high temperature expansion for finite Heisenberg spin systems with an arbitrary coupling matrix, arbitrary single-spin quantum number, and arbitrary number of spins. The results can be used to determine unknown exchange parameters from zero-field magnetic susceptibility measurements without diagonalizing the system Hamiltonian. We demonstrate the possibility of reconstructing the exchange parameters from simulated data for two specific model systems. We examine the accuracy and stability of the proposed method.Comment: 13 pages, 7 figures, submitted to Phys. Rev.

    Tuning the magnetic ground state of a novel tetranuclear Nickel(II) molecular complex by high magnetic fields

    Full text link
    Electron spin resonance and magnetization data in magnetic fields up to 55 T of a novel multicenter paramagnetic molecular complex [L_2Ni_4(N_3)(O_2C Ada)_4](Cl O_4) are reported. In this compound, four Ni centers each having a spin S = 1 are coupled in a single molecule via bridging ligands (including a \mu_4-azide) which provide paths for magnetic exchange. Analysis of the frequency and temperature dependence of the ESR signals yields the relevant parameters of the spin Hamiltonian, in particular the single ion anisotropy gap and the g factor, which enables the calculation of the complex energy spectrum of the spin states in a magnetic field. The experimental results give compelling evidence for tuning the ground state of the molecule by magnetic field from a nonmagnetic state at small fields to a magnetic one in strong fields owing to the spin level crossing at a field of ~25 T.Comment: revised version, accepted for publication in Physical Review
    corecore