1,388 research outputs found

    Assistant practitioners (APs) perceptions of their developing role and practice in radiography: Results from a national survey

    Get PDF
    Introduction: In 2000, the NHS Plan set out the government's plans for investment and reform across the NHS. Through the introduction of a new workforce at assistant practitioner (AP) level the Department of Health intended to implement new ways in which to deliver a more efficient service. At the time, little published information existed on the integration of these assistants into the contemporary radiography workforce. Publications were limited to experiences gained by various individual departments ranging in their perception of the role and education of APs. Further research was suggested to track the continuing implementation of the 4-tier structure, establish the precise nature and scope of the roles across Trusts and determine their impact on workload and patient care. Aim: To establish the number and employment locality of APs in radiography professions in England, and to explore their scope of applied practice. Method and materials: The study was conducted over three phases and employed a mixed methods design to address the aims and objectives. Phase I was a scoping exercise performed prior to data collection in which n = 226 radiography sites were identified for contact across England. Phase II utilized a questionnaire as data collection tool to investigate the role of APs in radiography and explore how their roles were integrated into the radiography workforce in England. Results from phase III of the study which utilized semi-structured qualitative interviews are not included in this paper. Conclusion and discussion: Key findings depict the nature and variety of roles and responsibilities undertaken by APs in radiography. This study was the first of its kind to identify the integration of APs in radiography across a sizable geographical region. There were mixed responses to the question asking APs if they were required to perform duties outside their scope of practice. Questionnaire data revealed that a high numbers of APs were working in areas under indirect supervision. Results from this study showed that APs, in some areas at least, were performing the roles of practitioners. Therefore further investigation is needed for new roles to develop criteria to determine which new roles should be the subject of statutory regulation. © 2011 The College of Radiographers

    On the Search for Quasar Light Echoes

    Full text link
    The UV radiation from a quasar leaves a characteristic pattern in the distribution of ionized hydrogen throughout the surrounding space. This pattern or light echo propagates through the intergalactic medium at the speed of light, and can be observed by its imprint on the Ly-alpha forest spectra of background sources. As the echo persists after the quasar has switched off, it offers the possibility of searching for dead quasars, and constraining their luminosities and lifetimes. We outline a technique to search for and characterize these light echoes. To test the method, we create artificial Ly-alpha forest spectra from cosmological simulations at z=3, apply light echoes and search for them. We show how the simulations can also be used to quantify the significance level of any detection. We find that light echoes from the brightest quasars could be found in observational data. With absorption line spectra of 100 redshift z~3-3.5 quasars or galaxies in a 1 square degree area, we expect that ~10 echoes from quasars with B band luminosities L_B=3x10^45 ergs/s exist that could be found at 95% confidence, assuming a quasar lifetime of ~10^7 yr. Even a null result from such a search would have interesting implications for our understanding of quasar luminosities and lifetimes.Comment: 9 pages, 7 figures, ApJ in pres

    Giving hope, ticking boxes or securing services? A qualitative study of respiratory physiotherapists' views on goal-setting with people with chronic obstructive pulmonary disease.

    Get PDF
    OBJECTIVE: To explore respiratory physiotherapists' views and experiences of using goal-setting with people with chronic obstructive pulmonary disease in rehabilitation settings. PARTICIPANTS: A total of 17 respiratory physiotherapists with ⩾12 months current or previous experience of working with patients with chronic obstructive pulmonary disease in a non-acute setting. Participants were diverse in relation to age (25-49 years), sex (13 women), experience (Agenda for Change bands 6-8) and geographic location. METHOD: Data were collected via face-to-face qualitative in-depth interviews (40-70 minutes) using a semi-structured interview guide. Interview locations were selected by participants (included participants' homes, public places and University). Interviews followed an interview guide, were audio-recorded and transcribed verbatim. DATA ANALYSIS: Data were analysed using thematic analysis; constant comparison was made within and between accounts, and negative case analysis was used. RESULTS: Three themes emerged through the process of analysis: (1) 'Explaining goal-setting'; (2) 'Working with goals'; and (3) 'Influences on collaborative goal-setting'. Goal-setting practices among respiratory physiotherapists varied considerably. Collaborative goal-setting was described as challenging and was sometimes driven by service need rather than patient values. Lack of training in collaborative goal-setting at both undergraduate and postgraduate level was also seen as an issue. CONCLUSION: Respiratory physiotherapists reflected uncertainties around the use of goal-setting in their practice, and conflict between patients' goals and organisational demands. This work highlights a need for wider discussion to clarify the purpose and implementation of goal-setting in respiratory rehabilitation

    Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys

    Full text link
    We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey conditions, and fiducial model. We find results that are competitive with the performance of future supernovae Ia surveys. We conclude that redshift surveys offer a promising independent route to the measurement of dark energy.Comment: submitted to ApJ, 24 pages, LaTe

    Radial Redshift Space Distortions

    Get PDF
    The radial component of the peculiar velocities of galaxies cause displacements in their positions in redshift space. We study the effect of the peculiar velocities on the linear redshift space two point correlation function. Our analysis takes into account the radial nature of the redshift space distortions and it highlights the limitations of the plane parallel approximation. We consider the problem of determining the value of \beta and the real space two point correlation function from the linear redshift space two point correlation function. The inversion method proposed here takes into account the radial nature of the redshift space distortions and can be applied to magnitude limited redshift surveys that have only partial sky coverage.Comment: 26 pages including 11 figures, to appear in Ap

    The construction of identities in narratives about serious leisure occupations

    Get PDF
    Engagement in occupation contributes to the shaping of identity throughout the human life. The act of telling about such engagement involves interaction based on symbolic meaning; the speaker constructing an identity by conveying how the occupation is personally meaningful. This study explored meaning in narratives told by people who engage in serious leisure occupations. A total of 78 narratives were extracted from interviews with 17 people who invest considerable time and other resources into their leisure. Analysis focused on the content, structure and performance of each narrative in order to explore meaning. The meanings were organised into a framework based around three dimensions: the located self, the active self and the changing self. Each dimension has facets that the individual might emphasise, constructing a unique identity. The framework offers a structured basis for conceptualising how occupation contributes to the shaping of the internalised self and the socially situated identity

    Exploring Large-scale Structure with Billions of Galaxies

    Full text link
    We consider cosmological applications of galaxy number density correlations to be inferred from future deep and wide multi-band optical surveys. We mostly focus on very large scales as a probe of possible features in the primordial power spectrum. We find the proposed survey of the Large Synoptic Survey Telescope may be competitive with future all-sky CMB experiments over a broad range of scales. On very large scales the inferred power spectrum is robust to photometric redshift errors, and, given a sufficient number density of galaxies, to angular variations in dust extinction and photometric calibration errors. We also consider other applications, such as constraining dark energy with the two CMB-calibrated standard rulers in the matter power spectrum, and controlling the effect of photometric redshift errors to facilitate the interpretation of cosmic shear data. We find that deep photometric surveys over wide area can provide constraints that are competitive with spectroscopic surveys in small volumes.Comment: 11 pages, 7 figures, ApJ accepted, references added, expanded discussion in Sec. 3.

    The Correlation Function in Redshift Space: General Formula with Wide-angle Effects and Cosmological Distortions

    Get PDF
    A general formula for the correlation function in redshift space is derived in linear theory. The formula simultaneously includes wide-angle effects and cosmological distortions. The formula is applicable to any pair with arbitrary angle θ\theta between lines of sight, and arbitrary redshifts, z1z_1, z2z_2, which are not necessarily small. The effects of the spatial curvature both on geometry and on fluctuation spectrum are properly taken into account, and thus our formula holds in a Friedman-Lema\^{\i}tre universe with arbitrary cosmological parameters Ω0\Omega_0 and λ0\lambda_0. We illustrate the pattern of the resulting correlation function with several models, and also show that validity region of the conventional distant observer approximation is θ10\theta \le 10^\circ.Comment: 45 pages including 9 figures, To Appear in Astrophys. J. 535 (2000

    Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory

    Get PDF
    We present an improved prescription for matter power spectrum in redshift space taking a proper account of both the non-linear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the non-linear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1~2%, and the growth rate parameter by ~5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription of redshift-space power spectrum including the non-linear corrections can be used as an accurate theoretical template for anisotropic BAOs.Comment: 18 pages, 10 figure

    Note on Redshift Distortion in Fourier Space

    Full text link
    We explore features of redshift distortion in Fourier analysis of N-body simulations. The phases of the Fourier modes of the dark matter density fluctuation are generally shifted by the peculiar motion along the line of sight, the induced phase shift is stochastic and has probability distribution function (PDF) symmetric to the peak at zero shift while the exact shape depends on the wave vector, except on very large scales where phases are invariant by linear perturbation theory. Analysis of the phase shifts motivates our phenomenological models for the bispectrum in redshift space. Comparison with simulations shows that our toy models are very successful in modeling bispectrum of equilateral and isosceles triangles at large scales. In the second part we compare the monopole of the power spectrum and bispectrum in the radial and plane-parallel distortion to test the plane-parallel approximation. We confirm the results of Scoccimarro (2000) that difference of power spectrum is at the level of 10%, in the reduced bispectrum such difference is as small as a few percents. However, on the plane perpendicular to the line of sight of k_z=0, the difference in power spectrum between the radial and plane-parallel approximation can be more than 10%, and even worse on very small scales. Such difference is prominent for bispectrum, especially for those configurations of tilted triangles. The non-Gaussian signals under radial distortion on small scales are systematically biased downside than that in plane-parallel approximation, while amplitudes of differences depend on the opening angle of the sample to the observer. The observation gives warning to the practice of using the power spectrum and bispectrum measured on the k_z=0 plane as estimation of the real space statistics.Comment: 15 pages, 8 figures. Accepted for publication in ChJA
    corecore