7,926 research outputs found

    A Study of a Mini-drift GEM Tracking Detector

    Full text link
    A GEM tracking detector with an extended drift region has been studied as part of an effort to develop new tracking detectors for future experiments at RHIC and for the Electron Ion Collider that is being planned for BNL or JLAB. The detector consists of a triple GEM stack with a small drift region that was operated in a mini TPC type configuration. Both the position and arrival time of the charge deposited in the drift region were measured on the readout plane which allowed the reconstruction of a short vector for the track traversing the chamber. The resulting position and angle information from the vector could then be used to improve the position resolution of the detector for larger angle tracks, which deteriorates rapidly with increasing angle for conventional GEM tracking detectors using only charge centroid information. Two types of readout planes were studied. One was a COMPASS style readout plane with 400 micron pitch XY strips and the other consisted of 2x10mm2 chevron pads. The detector was studied in test beams at Fermilab and CERN, along with additional measurements in the lab, in order to determine its position and angular resolution for incident track angles up to 45 degrees. Several algorithms were studied for reconstructing the vector using the position and timing information in order to optimize the position and angular resolution of the detector for the different readout planes. Applications for large angle tracking detectors at RHIC and EIC are also discussed.Comment: Submitted to the IEEE Transactions on Nuclear Scienc

    On the Tail of the Overlap Probability Distribution in the Sherrington--Kirkpatrick Model

    Full text link
    We investigate the large deviation behavior of the overlap probability density in the Sherrington--Kirkpatrick model from several analytical perspectives. First we analyze the spin glass phase using the coupled replica scheme. Here generically 1NlogPN(q)\frac1N \log P_N(q) \approx A- {\cal A} ((qqEA)3((|q|-q_{EA})^3, and we compute the first correction to the expansion of \A in powers of TcTT_c-T. We study also the q=1q=1 case, where P(q)P(q) is know exactly. Finally we study the paramagnetic phase, where exact results valid for all qq's are obtained. The overall agreement between the various points of view is very satisfactory. Data from large scale numerical simulations show that the predicted behavior can be detected already on moderate lattice sizes.Comment: 18 pages including ps figure

    Nonequilibrium dynamics of a simple stochastic model

    Full text link
    We investigate the low-temperature dynamics of a simple stochastic model, introduced recently in the context of the physics of glasses. The slowest characteristic time at equilibrium diverges exponentially at low temperature. On smaller time scales, the nonequilibrium dynamics of the system exhibits an aging regime. We present an analytical study of the scaling behaviour of the mean energy, of its local correlation and response functions, and of the associated fluctuation-dissipation ratio throughout the regime of low temperature and long times. This analysis includes the aging regime, the convergence to equilibrium, and the crossover behaviour between them.Comment: 36 pages, plain tex, 7 figures, to be published by Journal of Physics

    Dirac quasiparticles in the mixed state

    Full text link
    Energies and wave functions are calculated for d-wave quasiparticles in the mixed state using the formalism of Franz and Tesanovic for the low-lying energy levels. The accuracy of the plane-wave expansion is explored by comparing approximate to exact results for a simplified one-dimensional problem, and the convergence of the plane- wave expansion to the two-dimensional case is studied. The results are used to calculate the low-energy tunneling density of states and the low-temperature specific heat, and these theoretical results are compared to semiclassical treatments and to the available data. Implications for the muon spin resonance measurements of vortex core size are also discussed.Comment: 13 pages, 15 figures, RevTeX. References corrected. A factor of 2 in the results has been corrected, and the conclusions have been update

    Damage spreading in the mode-coupling equations for glasses

    Full text link
    We examine the problem of damage spreading in the off-equilibrium mode coupling equations. The study is done for the spherical pp-spin model introduced by Crisanti, Horner and Sommers. For p>2p>2 we show the existence of a temperature transition T0T_0 well above any relevant thermodynamic transition temperature. Above T0T_0 the asymptotic damage decays to zero while below T0T_0 it decays to a finite value independent of the initial damage. This transition is stable in the presence of asymmetry in the interactions. We discuss the physical origin of this peculiar phase transition which occurs as a consequence of the non-linear coupling between the damage and the two-time correlation functions.Comment: 5 pages, 2 figures, Revtex fil

    Phase coexistence and finite-size scaling in random combinatorial problems

    Full text link
    We study an exactly solvable version of the famous random Boolean satisfiability problem, the so called random XOR-SAT problem. Rare events are shown to affect the combinatorial ``phase diagram'' leading to a coexistence of solvable and unsolvable instances of the combinatorial problem in a certain region of the parameters characterizing the model. Such instances differ by a non-extensive quantity in the ground state energy of the associated diluted spin-glass model. We also show that the critical exponent ν\nu, controlling the size of the critical window where the probability of having solutions vanishes, depends on the model parameters, shedding light on the link between random hyper-graph topology and universality classes. In the case of random satisfiability, a similar behavior was conjectured to be connected to the onset of computational intractability.Comment: 10 pages, 5 figures, to appear in J. Phys. A. v2: link to the XOR-SAT probelm adde

    Modeling microevolution in a changing environment: The evolving quasispecies and the Diluted Champion Process

    Full text link
    Several pathogens use evolvability as a survival strategy against acquired immunity of the host. Despite their high variability in time, some of them exhibit quite low variability within the population at any given time, a somehow paradoxical behavior often called the evolving quasispecies. In this paper we introduce a simplified model of an evolving viral population in which the effects of the acquired immunity of the host are represented by the decrease of the fitness of the corresponding viral strains, depending on the frequency of the strain in the viral population. The model exhibits evolving quasispecies behavior in a certain range of its parameters, ans suggests how punctuated evolution can be induced by a simple feedback mechanism.Comment: 15 pages, 12 figures. Figures redrawn, some additional clarifications in the text. To appear in Journal of Statistical Mechanics: Theory and Experimen

    Theory of vortex lattice effects on STM spectra in d-wave superconductors

    Full text link
    Theory of scanning tunneling spectroscopy of low energy quasiparticle (QP) states in vortex lattices of d-wave superconductors is developed taking account of the effects caused by an extremely large extension of QP wavefunctions in the nodal directions and the band structure in the QP spectrum. The oscillatory structures in STM spectra, which correspond to van Hove singularities are analysed. Theoretical calculations carried out for finite temperatures and scattering rates are compared with recent experimental data for high temperature cuprates.Comment: 4 pages, 3 eps figures, M2S-HTSC-VI conference paper, using Elsevier style espcrc2.st

    Kob-Andersen model: a non-standard mechanism for the glassy transition

    Full text link
    We present new results reflecting the analogies between the Kob-Andersen model and other glassy systems. Studying the stability of the blocked configurations above and below the transition we also give arguments that supports their relevance for the glassy behaviour of the model. However we find, surprisingly, that the organization of the phase space of the system is different from the well known organization of other mean-field spin glasses and structural glasses.Comment: New reference added and one update
    corecore