5,973 research outputs found

    An improved Ant Colony System for the Sequential Ordering Problem

    Full text link
    It is not rare that the performance of one metaheuristic algorithm can be improved by incorporating ideas taken from another. In this article we present how Simulated Annealing (SA) can be used to improve the efficiency of the Ant Colony System (ACS) and Enhanced ACS when solving the Sequential Ordering Problem (SOP). Moreover, we show how the very same ideas can be applied to improve the convergence of a dedicated local search, i.e. the SOP-3-exchange algorithm. A statistical analysis of the proposed algorithms both in terms of finding suitable parameter values and the quality of the generated solutions is presented based on a series of computational experiments conducted on SOP instances from the well-known TSPLIB and SOPLIB2006 repositories. The proposed ACS-SA and EACS-SA algorithms often generate solutions of better quality than the ACS and EACS, respectively. Moreover, the EACS-SA algorithm combined with the proposed SOP-3-exchange-SA local search was able to find 10 new best solutions for the SOP instances from the SOPLIB2006 repository, thus improving the state-of-the-art results as known from the literature. Overall, the best known or improved solutions were found in 41 out of 48 cases.Comment: 30 pages, 8 tables, 11 figure

    Probing the Quark-Gluon Plasma with Jets in CMS at the LHC

    Get PDF

    Is Strong Gravitational Radiation predicted by TeV-Gravity?

    Get PDF
    In TeV-gravity models the gravitational coupling to particles with energies E\sim m_{Pl} \sim 10 TeV is not suppressed by powers of ultra-small ratio E/M_{Pl} with M_{Pl} \sim 10^{19} GeV. Therefore one could imagine strong synchrotron radiation of gravitons by the accelerating particles to become the most pronounced manifestation of TeV-gravity at LHC. However, this turns out to be not true: considerable damping continues to exist, only the place of E/M_{Pl} it taken by a power of a ratio \theta\omega/E, where the typical frequency \omega of emitted radiation, while increased by a number of \gamma-factors, can not reach E/\vartheta unless particles are accelerated by nearly critical fields. Moreover, for currently available magnetic fields B \sim 10 Tesla, multi-dimensionality does not enhance gravitational radiation at all even if TeV-gravity is correct.Comment: 7 pages, LaTe

    Generalized matrix models and AGT correspondence at all genera

    Get PDF
    We study generalized matrix models corresponding to n-point Virasoro conformal blocks on Riemann surfaces with arbitrary genus g. Upon AGT correspondence, these describe four dimensional N=2 SU(2)^{n+3g-3} gauge theories with generalized quiver diagrams. We obtain the generalized matrix models from the perturbative evaluation of the Liouville correlation functions and verify the consistency of the description with respect to degenerations of the Riemann surface. Moreover, we derive the Seiberg-Witten curve for the N=2 gauge theory as the spectral curve of the generalized matrix model, thus providing a check of AGT correspondence at all genera.Comment: 19 pages; v2: version to appear in JHE

    Wave function-dependent mobility and suppression of interface roughness scattering in a strained SiGe p-channel field-effect structure

    Get PDF
    The 4 K Hall mobility has been measured in a top-gated, inverted, modulation-doped Si/Si0.8Ge0.2 structure having a Si:B doping layer beneath the alloy. From comparisons with theoretical calculations, we argue that, unlike an ordinary enhancement-mode SiGe p-channel metal–oxide–semiconductor structure, this configuration leads to a decrease of interface roughness scattering with increasing sheet carrier density. We also speculate on the nature of the interface charge observed in these structures at low temperature

    Hole density dependence of effective mass, mobility and transport time in strained Ge channel modulation-doped heterostructures

    Get PDF
    We performed systematic low-temperature (T = 350 mK–15 K) magnetotransport measurements on the two-dimensional hole gas with various sheet carrier densities Ps = (0.57–2.1)×1012 cm–2 formed in the strained Ge channel modulation-doped (MOD) SiGe heterostructures grown on Si substrates. It was found that the effective hole mass deduced by temperature dependent Shubnikov–de Hass oscillations increased monotonically from (0.087±0.05)m0 to (0.19±0.01)m0 with the increase of Ps, showing large band nonparabolicity in strained Ge. In contrast to this result, the increase of the mobility with increasing Ps (up to 29 000 cm2/V s) was observed, suggesting that Coulomb scattering played a dominant role in the transport of the Ge channel at low temperatures. In addition, the Dingle ratio of the transport time to the quantum lifetime was found to increase with increasing Ps, which was attributed to the increase of remote impurity scattering with the increase of the doping concentration in MOD SiGe layers

    Extremely high room-temperature two-dimensional hole gas mobility in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures

    Get PDF
    To extract the room-temperature drift mobility and sheet carrier density of two-dimensional hole gas (2DHG) that form in Ge strained channels of various thicknesses in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures, the magnetic field dependences of the magnetoresistance and Hall resistance at temperature of 295 K were measured and the technique of maximum entropy mobility spectrum analysis was applied. This technique allows a unique determination of mobility and sheet carrier density of each group of carriers present in parallel conducting multilayers semiconductor heterostructures. Extremely high room-temperature drift mobility (at sheet carrier density) of 2DHG 2940 cm2 V–1 s–1 (5.11×1011 cm–2) was obtained in a sample with a 20 nm thick Ge strained channel

    Privacy-preserving stream aggregation with fault tolerance

    Get PDF
    LNCS v. 7397 entitled: Financial cryptography and data security : 16th International Conference, FC 2012 ... Revised selected papersWe consider applications where an untrusted aggregator would like to collect privacy sensitive data from users, and compute aggregate statistics periodically. For example, imagine a smart grid operator who wishes to aggregate the total power consumption of a neighborhood every ten minutes; or a market researcher who wishes to track the fraction of population watching ESPN on an hourly basis. We design novel mechanisms that allow an aggregator to accurately estimate such statistics, while offering provable guarantees of user privacy against the untrusted aggregator. Our constructions are resilient to user failure and compromise, and can efficiently support dynamic joins and leaves. Our constructions also exemplify the clear advantage of combining applied cryptography and differential privacy techniques. © 2012 Springer-Verlag.postprin
    • …
    corecore