46,610 research outputs found
Young module multiplicities and classifying the indecomposable Young permutation modules
We study the multiplicities of Young modules as direct summands of
permutation modules on cosets of Young subgroups. Such multiplicities have
become known as the p-Kostka numbers. We classify the indecomposable Young
permutation modules, and, applying the Brauer construction for p-permutation
modules, we give some new reductions for p-Kostka numbers. In particular we
prove that p-Kostka numbers are preserved under multiplying partitions by p,
and strengthen a known reduction given by Henke, corresponding to adding
multiples of a p-power to the first row of a partition.Comment: 22 page
A knowledge based software engineering environment testbed
The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processin
Delay-rate tradeoff for ergodic interference alignment in the Gaussian case
In interference alignment, users sharing a wireless channel are each able to
achieve data rates of up to half of the non-interfering channel capacity, no
matter the number of users. In an ergodic setting, this is achieved by pairing
complementary channel realizations in order to amplify signals and cancel
interference. However, this scheme has the possibility for large delays in
decoding message symbols. We show that delay can be mitigated by using outputs
from potentially more than two channel realizations, although data rate may be
reduced. We further demonstrate the tradeoff between rate and delay via a
time-sharing strategy. Our analysis considers Gaussian channels; an extension
to finite field channels is also possible.Comment: 7 pages, 2 figures, presented at 48th Allerton Conference on
Communication Control and Computing, 2010. Includes appendix detailing Markov
chain analysi
The cognitive demands of second order manual control: Applications of the event related brain potential
Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP
A novel, resistance-linked ovine PrP variant and its equivalent mouse variant modulate the in vitro cell-free conversion of rPrP to PrPres
Prion diseases are associated with the conversion of the normal cellular prion protein, PrPc, to the abnormal, disease-associated form, PrPSc. This conversion can be mimicked in vitro by using a cell-free conversion assay. It has recently been shown that this assay can be modified to use bacterial recombinant PrP as substrate and mimic the in vivo transmission characteristics of rodent scrapie. Here, it is demonstrated that the assay replicates the ovine polymorphism barriers of scrapie transmission. In addition, the recently identified ovine PrP variant ARL168Q, which is associated with resistance of sheep to experimental BSE, modulates the cell-free conversion of ovine recombinant PrP to PrPres by three different types of PrPSc, reducing conversion efficiencies to levels similar to those of the ovine resistance-associated ARR variant. Also, the equivalent variant in mice (L164) is resistant to conversion by 87V scrapie. Together, these results suggest a significant role for this position and/or amino acid in conversion
Rotorcraft convertible engine study
The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988
Laser frequency stabilization to a single ion
A fundamental limit to the stability of a single-ion optical frequency
standard is set by quantum noise in the measurement of the internal state of
the ion. We discuss how the interrogation sequence and the processing of the
atomic resonance signal can be optimized in order to obtain the highest
possible stability under realistic experimental conditions. A servo algorithm
is presented that stabilizes a laser frequency to the single-ion signal and
that eliminates errors due to laser frequency drift. Numerical simulations of
the servo characteristics are compared to experimental data from a frequency
comparison of two single-ion standards based on a transition at 688 THz in
171Yb+. Experimentally, an instability sigma_y(100 s)=9*10^{-16} is obtained in
the frequency difference between both standards.Comment: 15 pages, 5 figures, submitted to J. Phys.
- …
