178 research outputs found

    Separated Response Function Ratios in Exclusive, Forward pi^{+/-} Electroproduction

    Full text link
    The study of exclusive π±\pi^{\pm} electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio RL=σLπ/σLπ+R_L=\sigma_L^{\pi^-}/\sigma_L^{\pi^+} is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of RT=σTπ/σTπ+R_T=\sigma_T^{\pi^-}/\sigma_T^{\pi^+} from unity at small t-t, to 1/4 at large t-t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to pQCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive π±\pi^{\pm} electroproduction on the deuteron at central Q2Q^2 values of 0.6, 1.0, 1.6 GeV2^2 at WW=1.95 GeV, and Q2=2.45Q^2=2.45 GeV2^2 at WW=2.22 GeV. Here, we present the LL and TT cross sections, with emphasis on RLR_L and RTR_T, and compare them with theoretical calculations. Results for the separated ratio RLR_L indicate dominance of the pion-pole diagram at low t-t, while results for RTR_T are consistent with a transition between pion knockout and quark knockout mechanisms.Comment: 6 pages, 3 figure

    First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction

    Full text link
    The first measurements of the transferred polarization for the exclusive ep --> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron beam was used to measure the hyperon polarization over a range of Q2 from 0.3 to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass angular range of the K+ meson. Comparison with predictions of hadrodynamic models indicates strong sensitivity to the underlying resonance contributions. A non-relativistic quark model interpretation of our data suggests that the s-sbar quark pair is produced with spins predominantly anti-aligned. Implications for the validity of the widely used 3P0 quark-pair creation operator are discussed.Comment: 6 pages, 4 figure

    Measurement of Inclusive Spin Structure Functions of the Deuteron

    Full text link
    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer (Q2Q^2 = 0.27 -- 1.3 (GeV/c)2^2) and final hadronic state mass in the nucleon resonance region (WW = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target (15^{15}ND3_3) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry AA_{||} and the spin structure function g1dg_1^d. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function g1dg_1^d and study its approach to both the deep inelastic limit at large Q2Q^2 and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q20Q^2 \to 0). We find that the first moment varies rapidly in the Q2Q^2 range of our experiment and crosses zero at Q2Q^2 between 0.5 and 0.8 (GeV/c)2^2, indicating the importance of the Δ\Delta resonance at these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys. Rev.

    eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV

    Full text link
    Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure

    Search for medium modification of the ρ\rho meson

    Get PDF
    The photoproduction of vector mesons on various nuclei has been studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory. The vector mesons, ρ\rho, ω\omega, and ϕ\phi, are observed via their decay to e+ee^+e^-, in order to reduce the effects of final state interactions in the nucleus. Of particular interest are possible in-medium effects on the properties of the ρ\rho meson. The ρ\rho spectral function is extracted from the data on various nuclei, carbon, iron, and titanium, and compared to the spectrum from liquid deuterium, which is relatively free of nuclear effects. We observe no significant mass shift for the ρ\rho meson; however, there is some widening of the resonance in titanium and iron, which is consistent with expected collisional broadening.Comment: 8 pages, 4 figure

    A Bayesian analysis of pentaquark signals from CLAS data

    Get PDF
    We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Θ+\Theta^{+} pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Θ+\Theta^{+}. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.Comment: 5 pages, 3 figure

    Exclusive ρ0\rho^0 electroproduction on the proton at CLAS

    Full text link
    The epepρ0e p\to e^\prime p \rho^0 reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The WW, Q2Q^2 and tt dependences of the cross section are compared to theoretical calculations based on tt-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the \approx 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.Comment: 29 pages, 29 figure

    Onset of asymptotic scaling in deuteron photodisintegration

    Full text link
    We investigate the transition from the nucleon-meson to quark-gluon description of the strong interaction using the photon energy dependence of the d(γ,p)nd(\gamma,p)n differential cross section for photon energies above 0.5 GeV and center-of-mass proton angles between 3030^{\circ} and 150150^{\circ}. A possible signature for this transition is the onset of cross section s11s^{-11} scaling with the total energy squared, ss, at some proton transverse momentum, PTP_T. The results show that the scaling has been reached for proton transverse momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure

    Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back-to-back with little momentum along the three-momentum transfer, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured distorted two-nucleon momentum distributions by striking the third nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
    corecore