2,370 research outputs found

    Radial and angular rotons in trapped dipolar gases

    Full text link
    We study Bose-Einstein condensates with purely dipolar interactions in oblate (pancake) traps. We find that the condensate always becomes unstable to collapse when the number of particles is sufficiently large. We analyze the instability, and find that it is the trapped-gas analogue of the ``roton-maxon'' instability previously reported for a gas that is unconfined in two dimensions. In addition, we find that under certain circumstances, the condensate wave function attains a biconcave shape, with its maximum density away from the center of the gas. These biconcave condensates become unstable due to azimuthl excitation - an angular roton.Comment: 4 pages, 3 figure

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure

    Dipolar Bose gases: Many-body versus mean-field description

    Full text link
    We characterize zero-temperature dipolar Bose gases under external spherical confinement as a function of the dipole strength using the essentially exact many-body diffusion Monte Carlo (DMC) technique. We show that the DMC energies are reproduced accurately within a mean-field framework if the variation of the s-wave scattering length with the dipole strength is accounted for properly. Our calculations suggest stability diagrams and collapse mechanisms of dipolar Bose gases that differ significantly from those previously proposed in the literature
    • …
    corecore