7 research outputs found

    First Report on the Benthic Invertebrate Community Associated With a Bronze Naval Ram From the First Punic War: A Proxy of Marine Biodiversity

    Get PDF
    Historical traces of organisms on the seafloor, such as shells and tubes, constitute the ecological memory of ancient benthic assemblages and serve as an important resource for understanding the assembly of modern communities. Archeological shipwrecks are particularly interesting submerged substrata for both their archeological and biological implications. For the first time, we studied the species composition and life-history traits of dominant organisms in the benthic assemblage on a bronze Carthaginian naval ram, which sank more than two thousand years ago in the Southern Tyrrhenian Sea. By comparing the species composition of the ram assemblage with those of the surrounding habitats, we inferred possible colonization patterns for the ram and discussed the informative role of the shipwreck as a proxy of marine biodiversity. The ram assemblage was rich in species, including both sessile (bryozoans, serpulid polychaetes, and few bivalves) and motile (gastropods) species. Sexual reproduction with free-spawning fertilization and long-duration larvae characterized most species. The long submersion time of the ram, together with the reproductive strategies, growth forms, and motility of the dominant species were key factors shaping the community of the ram. The ram itself offers an archeological artifact of inestimable value, but our analysis revealed it to be an effective collector of fauna from the surrounding seabed. The ram community hosted species from a range of nearby natural habitats (mostly coralligenous, detritic bottoms, and zoosteracean meadows) and thus served as a proxy for marine biodiversity on the surrounding seabed. We conclude that the presence of many species on the ram that commonly occur in adjacent habitats of great environmental value was informative and highlight the important marine biodiversity in the area of the Aegadian archipelago

    ASPECTS OF BIODETERIORATION OF LAPIDEOUS SUBMERGED ARTEFACTS: 3D METHODOLOGIES APPLICATION

    No full text
    Submerged stone archaeological artefacts are bioeroded by endolithic microbiota (cyanobacteria, algae and fungi) and macroborers (Porifera, Bivalvia and Sipuncula). Optical microscope and SEM observations permit to analyse the bioerosion traces and to identify bioeroders. Data obtained with these techniques cannot be used to estimate volumes of material bioeroded. This aspect require the need to collect three-dimensional, close-range data from artefact. In this work we illustrate two 3D imaging techniques used to study bioerosion phenomena of underwater Cultural Heritage. In particular Digital Video Microscope permit the elaboration of 3D images, which are widely employed for close-range acquisitions. Underwater Laser Scanner documents the in situ degradation of submerged artefacts. This research aims to sensitize specialist figures in the study 3D offering a starting point for future collaborations that could lead to interesting results

    DOCUMENTATION AND MONITORING OF UNDERWATER ARCHAEOLOGICAL SITES USING 3D IMAGING TECHNIQUES: THE CASE STUDY OF THE "NYMPHAEUM OF PUNTA EPITAFFIO" (BAIAE, NAPLES)

    Get PDF
    Abstract. The preservation status of an underwater cultural site can be determined as the combination of two primary factors, namely the site physical integrity, which results from the past and present interaction of the site itself with the biological/chemical agents located in the surrounding environment, and the exposure of the site to human-related threats. Methods to survey underwater archaeological sites have evolved considerably in the last years in order to face the challenges and problems in archaeological prospection, documentation, monitoring, and data collection.This paper presents a case-study of an archaeological documentation campaign addressed to study and monitor the preservation status of an underwater archaeological site by combining the quantitative measurements coming from optical and acoustic surveys with the study of biological colonization and bioerosion phenomena affecting ancient artefacts. In particular, we present the first results obtained in the survey and documentation campaign carried out during the spring – summer 2018 in the "Nymphaeum of Punta Epitaffio" located in the Marine Protected Area - Underwater Park of Baiae (Naples)

    The role of polychaetes in bioerosion of submerged mosaic floors in the Underwater Archaeological Park of Baiae (Naples, Italy)

    No full text
    The study investigated the role of boring polychaetes in the bioerosion of a submerged Roman mosaic floor in the Underwater Archaeological Park of Baiae (Naples, Italy). Three boring species, Dodecaceria concharum, Polydora ciliata, and Pseudopolydora antennata, were found. The initial colonization phases of boring polychaetes were investigated on experimental limestone panels placed underwater in the same marine area. The results showed that the ecological succession was characterized by a first stage of colonization with abundant spionids and a second stage with a boring mature community dominated by D. concharum. The study of silicone casts of the bored traces allowed confirmation that the ichnospecies belonging to the ichnogenera Maeandropolydora could be attributed to the action of spionid worms, whereas D. concharum is able to produce tongue- and ribbon-shaped borings (ichnogenus Caulostrepsis), and variously contorted galleries (ichnogenus Maeandropolydora) by settling inside borings produced by other polychaetes and increasing the complexity of the gallery system by modifying them. The study of the epilithic polychaete community highlighted that the site is characterized by a low hydrodynamism. Therefore, the most suitable in situ preservation interventions would be the covering of the mosaics with sand layers or geotextiles

    Colonization dynamic on experimental limestone substrata: the role of encrusting epilithics favouring boring polychaetes

    No full text
    Polychaetes inhabit all the marine benthic communities and play a significant role in the degradation of calcareous substrates in marine environment. Colonization dynamics of encrusting epibenthos and polychaete assemblages on limestone experimental substrates were studied over a 3-year period in a Marine Protected Area: the Underwater Archaeological Park of Baiae (central Tyrrhenian Sea). Competitive and encrusting organisms replaced the pioneer species, dominating the epilithic community, and increasing the available surface. Polychaetes increased in species number over time. Several boring specimens of the species Polydora ciliata and Dodecaceria concharum were responsible for the bioerosion of the calcareous material. The former species characterized the early stage of the succession, whereas the latter settled during the late stages, together with the nestler species Lysidice unicornis, whose boring activity has been hypothesized. Four different surface trace morphologies attributable to boring polychaetes are here reported and described. The number of the polychaete boring traces increased according to the surface covered by ascidians, barnacles, and bryozoans. The present work provides evidence regarding positive interactions between encrusting epibenthic organisms and endolithic worms
    corecore