1,061 research outputs found

    The broad-line region and dust torus size of the Seyfert 1 galaxy PGC50427

    Full text link
    We present the results of a three years monitoring campaigns of the z=0.024z = 0.024 type-1 active galactic nucleus (AGN) PGC50427. Through the use of Photometric Reverberation Mapping with broad and narrow band filters, we determine the size of the broad-line emitting region by measuring the time delay between the variability of the continuum and the Hα\alpha emission line. The Hα\alpha emission line responds to blue continuum variations with an average rest frame lag of 19.0±1.2319.0 \pm 1.23 days. Using single epoch spectroscopy we determined a broad-line Hα\alpha velocity width of 1020 km s−1^{-1} and in combination with the rest frame lag and adoption a geometric scaling factor f=5.5f = 5.5, we calculate a black hole mass of MBH∌17×106M⊙M_{BH} \sim 17 \times 10^{6} M_{\odot}. Using the flux variation gradient method, we separate the host galaxy contribution from that of the AGN to calculate the rest frame 5100\AA~ luminosity at the time of our monitoring campaign. The rest frame lag and the host-subtracted luminosity permit us to derive the position of PGC50427 in the BLR size -- AGN luminosity diagram, which is remarkably close to the theoretically expected relation of R∝L0.5R \propto L^{0.5}. The simultaneous optical and NIR (JJ and KsK_{s}) observations allow us to determine the size of the dust torus through the use of dust reverberation mapping method. We find that the hot dust emission (∌1800K\sim 1800K) lags the optical variations with an average rest frame lag of 46.2±2.6046.2 \pm 2.60 days. The dust reverberation radius and the nuclear NIR luminosity permit us to derive the position of PGC50427 on the known τ−MV\tau - M{V} diagram. The simultaneus observations for the broad-line region and dust thermal emission demonstrate that the innermost dust torus is located outside the BLR in PGC50427, supporting the unified scheme for AGNs. (Abstract shortened, see the manuscript.)Comment: 11 pages, 23 figures, accepted for publication in Astronomy and Astrophysic

    The Cyclophilin-Binding Agent Sanglifehrin A Is a Dendritic Cell Chemokine and Migration Inhibitor

    Get PDF
    Sanglifehrin A (SFA) is a cyclophilin-binding immunosuppressant but the immunobiology of action is poorly understood. We and others have reported that SFA inhibits IL-12 production and antigen uptake in dendritic cells (DC) and exhibits lower activity against lymphocytes. Here we show that SFA suppresses DC chemokine production and migration. Gene expression analysis and subsequent protein level confirmation revealed that SFA suppressed CCL5, CCL17, CCL19, CXCL9 and CXCL10 expression in human monocyte-derived DC (moDC). A systems biology analysis, Onto Express, confirmed that SFA interferes with chemokine-chemokine receptor gene expression with the highest impact. Direct comparison with the related agent cyclosporine A (CsA) and dexamethasone indicated that SFA uniquely suppresses moDC chemokine expression. Competitive experiments with a 100-fold molar excess of CsA and with N-Methyl-Val-4-cyclosporin, representing a nonimmunosuppressive derivative of CsA indicated chemokine suppression through a cyclophilin-A independent pathway. Functional assays confirmed reduced migration of CD4+ Tcells and moDCs to supernatant of SFA-exposed moDCs. Vice versa, SFA-exposed moDC exhibited reduced migration against CCL19. Moreover, SFA suppressed expression of the ectoenzyme CD38 that was reported to regulate DC migration and cytokine production. These results identify SFA as a DC chemokine and migration inhibitor and provide novel insight into the immunobiology of SFA

    Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40

    Full text link
    The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure

    Lifetime measurements in 63^{63}Co and 65^{65}Co

    Get PDF
    Lifetimes of the 9/21−9/2^-_1 and 3/21−3/2^-_1 states in 63^{63}Co and the 9/21−9/2^-_1 state in 65^{65}Co were measured using the recoil distance Doppler shift and the differential decay curve methods. The nuclei were populated by multi-nucleon transfer reactions in inverse kinematics. Gamma rays were measured with the EXOGAM Ge array and the recoiling fragments were fully identified using the large-acceptance VAMOS spectrometer. The E2 transition probabilities from the 3/21−3/2^-_1 and 9/21−9/2^-_1 states to the 7/2−7/2^- ground state could be extracted in 63^{63}Co as well as an upper limit for the 9/21−→7/21−9/2^-_1\rightarrow7/2^-_1 BB(E2) value in 65^{65}Co. The experimental results were compared to large-scale shell-model calculations in the pfpf and pfg9/2pfg_{9/2} model spaces, allowing to draw conclusions on the single-particle or collective nature of the various states.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Physical Review

    Identifying Boosted Objects with N-subjettiness

    Get PDF
    We introduce a new jet shape -- N-subjettiness -- designed to identify boosted hadronically-decaying objects like electroweak bosons and top quarks. Combined with a jet invariant mass cut, N-subjettiness is an effective discriminating variable for tagging boosted objects and rejecting the background of QCD jets with large invariant mass. In efficiency studies of boosted W bosons and top quarks, we find tagging efficiencies of 30% are achievable with fake rates of 1%. We also consider the discovery potential for new heavy resonances that decay to pairs of boosted objects, and find significant improvements are possible using N-subjettiness. In this way, N-subjettiness combines the advantages of jet shapes with the discriminating power seen in previous jet substructure algorithms.Comment: 26 pages, 26 figures, 2 tables; v2: references added; v3: discussion of results extende

    Structure of Fat Jets at the Tevatron and Beyond

    Full text link
    Boosted resonances is a highly probable and enthusiastic scenario in any process probing the electroweak scale. Such objects when decaying into jets can easily blend with the cornucopia of jets from hard relative light QCD states. We review jet observables and algorithms that can contribute to the identification of highly boosted heavy jets and the possible searches that can make use of such substructure information. We also review previous studies by CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era" issue of The European Physical Journal C, we invite comments regarding contents of the review; v2 added references and institutional preprint number

    Diboson-Jets and the Search for Resonant Zh Production

    Full text link
    New particles at the TeV-scale may have sizeable decay rates into boosted Higgs bosons or other heavy scalars. Here, we investigate the possibility of identifying such processes when the Higgs/scalar subsequently decays into a pair of W bosons, constituting a highly distinctive "diboson-jet." These can appear as a simple dilepton (plus MET) configuration, as a two-prong jet with an embedded lepton, or as a four-prong jet. We study jet substructure methods to discriminate these objects from their dominant backgrounds. We then demonstrate the use of these techniques in the search for a heavy spin-one Z' boson, such as may arise from strong dynamics or an extended gauge sector, utilizing the decay chain Z' -> Zh -> Z(WW^(*)). We find that modes with multiple boosted hadronic Zs and Ws tend to offer the best prospects for the highest accessible masses. For 100/fb luminosity at the 14 TeV LHC, Z' decays into a standard 125 GeV Higgs can be observed with 5-sigma significance for masses of 1.5-2.5 TeV for a range of models. For a 200 GeV Higgs (requiring nonstandard couplings, such as fermiophobic), the reach may improve to up to 2.5-3.0 TeV.Comment: 23 pages plus appendices, 9 figure

    Heavy Squarks at the LHC

    Full text link
    The LHC, with its seven-fold increase in energy over the Tevatron, is capable of probing regions of SUSY parameter space exhibiting qualitatively new collider phenomenology. Here we investigate one such region in which first generation squarks are very heavy compared to the other superpartners. We find that the production of these squarks, which is dominantly associative, only becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However, discovery of this scenario is complicated because heavy squarks decay primarily into a jet and boosted gluino, yielding a dijet-like topology with missing energy (MET) pointing along the direction of the second hardest jet. The result is that many signal events are removed by standard jet/MET anti-alignment cuts designed to guard against jet mismeasurement errors. We suggest replacing these anti-alignment cuts with a measurement of jet substructure that can significantly extend the reach of this channel while still removing much of the background. We study a selection of benchmark points in detail, demonstrating that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC with L~10(100)fb-1
    • 

    corecore