4,018 research outputs found

    ERS-2 SAR反演海洋风矢量的研究

    Get PDF
    Author name used in this publication: 陈艳玲Author name used in this publication: 丁晓利, DING Xiao-liAuthor name used in this publication: 李志伟Title in Traditional Chinese: ERS-2 SAR反演海洋風矢量的研究Journal title in Traditional Chinese: 地球物理學報2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Maternal Cigarette Smoke Exposure Exaggerates the Behavioral Defects and Neuronal Loss Caused by Hypoxic-Ischemic Brain Injury in Female Offspring.

    Full text link
    Objective: Hypoxic-ischemic encephalopathy affects ∼6 in 1,000 preterm neonates, leading to significant neurological sequela (e.g., cognitive deficits and cerebral palsy). Maternal smoke exposure (SE) is one of the common causes of neurological disorders; however, female offspring seems to be less affected than males in our previous study. We also showed that maternal SE exaggerated neurological disorders caused by neonatal hypoxic-ischemic brain injury in adolescent male offspring. Here, we aimed to examine whether female littermates of these males are protected from such insult. Methods: BALB/c dams were exposed to cigarette smoke generated from 2 cigarettes twice daily for 6 weeks before mating, during gestation and lactation. To induce hypoxic-ischemic brain injury, half of the pups from each litter underwent left carotid artery occlusion, followed by exposure to 8% oxygen (92% nitrogen) at postnatal day (P) 10. Behavioral tests were performed at P40-44, and brain tissues were collected at P45. Results: Maternal SE worsened the defects in short-term memory and motor function in females with hypoxic-ischemic injury; however, reduced anxiety due to injury was observed in the control offspring, but not the SE offspring. Both hypoxic-ischemic injury and maternal SE caused significant loss of neuronal cells and synaptic proteins, along with increased oxidative stress and inflammatory responses. Conclusion: Oxidative stress and inflammatory response due to maternal SE may be the mechanism of worsened neurological outcomes by hypoxic-ischemic brain injury in females, which was similar to their male littermates shown in our previous study

    Identification of disease-causing genes using microarray data mining and gene ontology

    Get PDF
    Background: One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes. Methods: We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results. Results: The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth. Conclusions: The proposed method addresses the weakness of conventional methods by adding a redundancy reduction stage and utilizing Gene Ontology information. It predicts marker genes for colon, DLBCL and prostate cancer with a high accuracy. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help in the search for a cure for cancers

    A Non-coding RNA of Insect HzNV-1 Virus Establishes Latent Viral Infection through MicroRNA

    Get PDF
    Heliothis zea nudivirus-1 (HzNV-1) is an insect virus previously known as Hz-1 baculovirus. One of its major early genes, hhi1, is responsible for the establishment of productive viral infection; another gene, pag1, which expresses a non-coding RNA, is the only viral transcript detectable during viral latency. Here we showed that this non-coding RNA was further processed into at least two distinct miRNAs, which targeted and degraded hhi1 transcript. This is a result strikingly similar to a recent report that herpes simplex virus produces tightly-regulated latent specific miRNAs to silence its own key early transcripts. Nevertheless, proof for the establishment of viral latency by miRNA is still lacking. We further showed that HzNV-1 latency could be directly induced by pag1-derived miRNAs in cells infected with a pag1-deleted, latency-deficient virus. This result suggests the existence of a novel mechanism, where miRNAs can be functional for the establishment of viral latency

    Mapping the unconventional orbital texture in topological crystalline insulators

    Get PDF
    The newly discovered topological crystalline insulators (TCIs) harbor a complex band structure involving multiple Dirac cones. These materials are potentially highly tunable by external electric field, temperature or strain and could find future applications in field-effect transistors, photodetectors, and nano-mechanical systems. Theoretically, it has been predicted that different Dirac cones, offset in energy and momentum-space, might harbor vastly different orbital character, a unique property which if experimentally realized, would present an ideal platform for accomplishing new spintronic devices. However, the orbital texture of the Dirac cones, which is of immense importance in determining a variety of materials properties, still remains elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI Pb1x_{1-x}Snx_xSe. By using Fourier-transform (FT) scanning tunneling spectroscopy (STS) we measure the interference patterns produced by the scattering of surface state electrons. We discover that the intensity and energy dependences of FTs show distinct characteristics, which can directly be attributed to orbital effects. Our experiments reveal the complex band topology involving two Lifshitz transitions and establish the orbital nature of the Dirac bands in this new class of topological materials, which could provide a different pathway towards future quantum applications

    Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry

    Get PDF
    With the advent of intelligent manufacturing, phase measuring deflectometry (PMD) has been widely studied for the measurement of the three-dimensional (3D) shape of specular objects. However, existing PMDs cannot measure objects having discontinuous specular surfaces. This paper presents a new direct PMD (DPMD) method that measures the full-field 3D shape of complicated specular objects. A mathematical model is derived to directly relate an absolute phase map to depth data, instead of the gradient. Two relevant parameters are calibrated using a machine vision-based method. On the basis of the derived model, a full-field 3D measuring system was developed. The accuracy of the system was evaluated using a mirror with known positions along an accurate translating stage. The 3D shape of a monolithic multi-mirror array having multiple specular surfaces was measured. Experimental results show that the proposed DPMD method can obtain the full-field 3D shape of specular objects having isolated and/or discontinuous surfaces accurately and effectively
    corecore