18,274 research outputs found

    Quantum-limited metrology in the presence of collisional dephasing

    Full text link
    Including collisional decoherence explicitly, phase sensitivity for estimating effective scattering strength χ\chi of a two-component Bose-Einstein condensate is derived analytically. With a measurement of spin operator J^x\hat{J}_{x}, we find that the optimal sensitivity depends on initial coherent spin state. It degrades by a factor of (2γ)1/3(2\gamma)^{1/3} below super-Heisenberg limit 1/N3/2\propto 1/N^{3/2} for particle number NN and the dephasing rate 1< ⁣<γ<N3/41<\!<\gamma<N^{3/4}. With a J^y\hat{J}_y measurement, our analytical results confirm that the phase ϕ=χt0\phi=\chi t\sim 0 can be detected at the limit even in the presence of the dephasing.Comment: 3.2 pages, 3 figure

    Spin squeezing: transforming one-axis-twisting into two-axis-twisting

    Full text link
    Squeezed spin states possess unique quantum correlation or entanglement that are of significant promises for advancing quantum information processing and quantum metrology. In recent back to back publications [C. Gross \textit{et al, Nature} \textbf{464}, 1165 (2010) and Max F. Riedel \textit{et al, Nature} \textbf{464}, 1170 (2010)], reduced spin fluctuations are observed leading to spin squeezing at -8.2dB and -2.5dB respectively in two-component atomic condensates exhibiting one-axis-twisting interactions (OAT). The noise reduction limit for the OAT interaction scales as 1/N2/3\propto 1/{N^{2/3}}, which for a condensate with N103N\sim 10^3 atoms, is about 100 times below standard quantum limit. We present a scheme using repeated Rabi pulses capable of transforming the OAT spin squeezing into the two-axis-twisting type, leading to Heisenberg limited noise reduction 1/N\propto 1/N, or an extra 10-fold improvement for N103N\sim 10^3.Comment: 4 pages, 3 figure

    The effects of surface finish and grain size on the strength of sintered silicon carbide

    Get PDF
    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding

    Roles of oxygen vacancies on ferromagnetism in Ni doped In2O3: A hybrid functional study

    Full text link
    The roles of oxygen vacancies on the electronic and magnetic properties of Ni doped In2_2O3_3 have been studied by first-principles calculations based on hybrid functional theory. Our results predict that the Ni-doped In2_2O3_3 system displays a ferromagnetic semiconducting character. However, the presence of oxygen vacancies results in antiferromagnetic coupling between the neighboring Ni pair bridged by an oxygen vacancy. The antiferromagnetic coupling is found to arise from the predominant role of superexchange due to the strong Ni 3d-O 2p hybridization. Consequently, the oxygen vacancies play a key role in the lower saturation magnetization of Ni:In2_2O3_3 polycrystalline sample, as observed in experiments.Comment: 6 pages, 3 figure

    A Critical Examination of Hypernova Remnant Candidates in M101. II. NGC 5471B

    Get PDF
    NGC 5471B has been suggested to contain a hypernova remnant because of its extraordinarily bright X-ray emission. To assess its true nature, we have obtained high-resolution images in continuum bands and nebular lines with the Hubble Space Telescope, and high-dispersion long-slit spectra with the Kitt Peak National Observatory 4-m echelle spectrograph. The images reveal three supernova remnant (SNR) candidates in the giant HII region NGC 5471, with the brightest one being the 77x60 pc shell in NGC 5471B. The Ha velocity profile of NGC 5471B can be decomposed into a narrow component (FWHM = 41 km/s) from the background HII region and a broad component (FWHM = 148 km/s) from the SNR shell. Using the brightness ratio of the broad to narrow components and the Ha flux measured from the WFPC2 Ha image, we derive an Ha luminosity of (1.4+-0.1)x10^39 ergs/s for the SNR shell. The [SII]6716,6731 doublet ratio of the broad velocity component is used to derive an electron density of ~700 cm^-3 in the SNR shell. The mass of the SNR shell is thus 4600+-500 Mo. With a \~330 km/s expansion velocity implied by the extreme velocity extent of the broad component, the kinetic energy of the SNR shell is determined to be 5x10^51 ergs. This requires an explosion energy greater than 10^52 ergs, which can be provided by one hypernova or multiple supernovae. Comparing to SNRs in nearby active star formation regions, the SNR shell in NGC 5471B appears truly unique and energetic. We conclude that the optical observations support the existence of a hypernova remnant in NGC 5471B.Comment: 27 pages, 9 figures, to appear in May 2002 issue of The Astronomical Journa

    Fault diagnostic instrumentation design for environmental control and life support systems

    Get PDF
    As a development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. As part of continous development efforts, a program to evaluate, design, and demonstrate advanced instrumentation fault diagnostics was successfully completed. Fault tolerance designs for reliability and other instrumenation capabilities to increase maintainability were evaluated and studied

    Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits

    Full text link
    We present an experimentally implementable method to couple Josephson charge qubits and to generate and detect macroscopic entangled states. A large-junction superconducting quantum interference device is used in the qubit circuit for both coupling qubits and implementing the readout. Also, we explicitly show how to achieve a microwave-assisted macroscopic entanglement in the coupled-qubit system.Comment: 8 pages, 4 figure

    Grains and grain boundaries in highly crystalline monolayer molybdenum disulfide

    Full text link
    Recent progress in large-area synthesis of monolayer molybdenum disulfide, a new two-dimensional direct-bandgap semiconductor, is paving the way for applications in atomically thin electronics. Little is known, however, about the microstructure of this material. Here we have refined chemical vapor deposition synthesis to grow highly crystalline islands of monolayer molybdenum disulfide up to 120 um in size with optical and electrical properties comparable or superior to exfoliated samples. Using transmission electron microscopy, we correlate lattice orientation, edge morphology, and crystallinity with island shape to demonstrate that triangular islands are single crystals. The crystals merge to form faceted tilt and mirror boundaries that are stitched together by lines of 8- and 4- membered rings. Density functional theory reveals localized mid-gap states arising from these 8-4 defects. We find that mirror boundaries cause strong photoluminescence quenching while tilt boundaries cause strong enhancement. In contrast, the boundaries only slightly increase the measured in-plane electrical conductivity
    corecore