18,274 research outputs found
Quantum-limited metrology in the presence of collisional dephasing
Including collisional decoherence explicitly, phase sensitivity for
estimating effective scattering strength of a two-component
Bose-Einstein condensate is derived analytically. With a measurement of spin
operator , we find that the optimal sensitivity depends on initial
coherent spin state. It degrades by a factor of below
super-Heisenberg limit for particle number and the
dephasing rate . With a measurement, our
analytical results confirm that the phase can be detected
at the limit even in the presence of the dephasing.Comment: 3.2 pages, 3 figure
Spin squeezing: transforming one-axis-twisting into two-axis-twisting
Squeezed spin states possess unique quantum correlation or entanglement that
are of significant promises for advancing quantum information processing and
quantum metrology. In recent back to back publications [C. Gross \textit{et al,
Nature} \textbf{464}, 1165 (2010) and Max F. Riedel \textit{et al, Nature}
\textbf{464}, 1170 (2010)], reduced spin fluctuations are observed leading to
spin squeezing at -8.2dB and -2.5dB respectively in two-component atomic
condensates exhibiting one-axis-twisting interactions (OAT). The noise
reduction limit for the OAT interaction scales as , which
for a condensate with atoms, is about 100 times below standard
quantum limit. We present a scheme using repeated Rabi pulses capable of
transforming the OAT spin squeezing into the two-axis-twisting type, leading to
Heisenberg limited noise reduction , or an extra 10-fold
improvement for .Comment: 4 pages, 3 figure
The effects of surface finish and grain size on the strength of sintered silicon carbide
The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding
Roles of oxygen vacancies on ferromagnetism in Ni doped In2O3: A hybrid functional study
The roles of oxygen vacancies on the electronic and magnetic properties of Ni
doped InO have been studied by first-principles calculations based on
hybrid functional theory. Our results predict that the Ni-doped InO
system displays a ferromagnetic semiconducting character. However, the presence
of oxygen vacancies results in antiferromagnetic coupling between the
neighboring Ni pair bridged by an oxygen vacancy. The antiferromagnetic
coupling is found to arise from the predominant role of superexchange due to
the strong Ni 3d-O 2p hybridization. Consequently, the oxygen vacancies play a
key role in the lower saturation magnetization of Ni:InO
polycrystalline sample, as observed in experiments.Comment: 6 pages, 3 figure
A Critical Examination of Hypernova Remnant Candidates in M101. II. NGC 5471B
NGC 5471B has been suggested to contain a hypernova remnant because of its
extraordinarily bright X-ray emission. To assess its true nature, we have
obtained high-resolution images in continuum bands and nebular lines with the
Hubble Space Telescope, and high-dispersion long-slit spectra with the Kitt
Peak National Observatory 4-m echelle spectrograph. The images reveal three
supernova remnant (SNR) candidates in the giant HII region NGC 5471, with the
brightest one being the 77x60 pc shell in NGC 5471B. The Ha velocity profile of
NGC 5471B can be decomposed into a narrow component (FWHM = 41 km/s) from the
background HII region and a broad component (FWHM = 148 km/s) from the SNR
shell. Using the brightness ratio of the broad to narrow components and the Ha
flux measured from the WFPC2 Ha image, we derive an Ha luminosity of
(1.4+-0.1)x10^39 ergs/s for the SNR shell. The [SII]6716,6731 doublet ratio of
the broad velocity component is used to derive an electron density of ~700
cm^-3 in the SNR shell. The mass of the SNR shell is thus 4600+-500 Mo. With a
\~330 km/s expansion velocity implied by the extreme velocity extent of the
broad component, the kinetic energy of the SNR shell is determined to be
5x10^51 ergs. This requires an explosion energy greater than 10^52 ergs, which
can be provided by one hypernova or multiple supernovae. Comparing to SNRs in
nearby active star formation regions, the SNR shell in NGC 5471B appears truly
unique and energetic. We conclude that the optical observations support the
existence of a hypernova remnant in NGC 5471B.Comment: 27 pages, 9 figures, to appear in May 2002 issue of The Astronomical
Journa
Fault diagnostic instrumentation design for environmental control and life support systems
As a development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. As part of continous development efforts, a program to evaluate, design, and demonstrate advanced instrumentation fault diagnostics was successfully completed. Fault tolerance designs for reliability and other instrumenation capabilities to increase maintainability were evaluated and studied
Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits
We present an experimentally implementable method to couple Josephson charge
qubits and to generate and detect macroscopic entangled states. A
large-junction superconducting quantum interference device is used in the qubit
circuit for both coupling qubits and implementing the readout. Also, we
explicitly show how to achieve a microwave-assisted macroscopic entanglement in
the coupled-qubit system.Comment: 8 pages, 4 figure
Grains and grain boundaries in highly crystalline monolayer molybdenum disulfide
Recent progress in large-area synthesis of monolayer molybdenum disulfide, a
new two-dimensional direct-bandgap semiconductor, is paving the way for
applications in atomically thin electronics. Little is known, however, about
the microstructure of this material. Here we have refined chemical vapor
deposition synthesis to grow highly crystalline islands of monolayer molybdenum
disulfide up to 120 um in size with optical and electrical properties
comparable or superior to exfoliated samples. Using transmission electron
microscopy, we correlate lattice orientation, edge morphology, and
crystallinity with island shape to demonstrate that triangular islands are
single crystals. The crystals merge to form faceted tilt and mirror boundaries
that are stitched together by lines of 8- and 4- membered rings. Density
functional theory reveals localized mid-gap states arising from these 8-4
defects. We find that mirror boundaries cause strong photoluminescence
quenching while tilt boundaries cause strong enhancement. In contrast, the
boundaries only slightly increase the measured in-plane electrical
conductivity
- …
