5,031 research outputs found
Resonances in Ferromagnetic Gratings Detected by Microwave Photoconductivity
We investigate the impact of microwave excited spin excitations on the DC
charge transport in a ferromagnetic (FM) grating. We observe both resonant and
nonresonant microwave photoresistance. Resonant features are identified as the
ferromagnetic resonance (FMR) and ferromagnetic antiresonance (FMAR). A
macroscopic model based on Maxwell and Landau-Lifschitz equations reveals the
macroscopic nature of the FMAR. The experimental approach and results provide
new insight in the interplay between photonic, spintronic, and charge effects
in FM microstructures.Comment: 4 pages, 4 figure
High sensitivity microwave detection using a magnetic tunnel junction in the absence of an external applied magnetic field
In the absence of any external applied magnetic field, we have found that a
magnetic tunnel junction (MTJ) can produce a significant output direct voltage
under microwave radiation at frequencies, which are far from the ferromagnetic
resonance condition, and this voltage signal can be increase by at least an
order of magnitude by applying a direct current bias. The enhancement of the
microwave detection can be explained by the nonlinear resistance/conductance of
the MTJs. Our estimation suggests that optimized MTJs should achieve
sensitivities for non-resonant broadband microwave detection of about 5,000
mV/mW
Quantized spin excitations in a ferromagnetic microstrip from microwave photovoltage measurements
Quantized spin excitations in a single ferromagnetic microstrip have been
measured using the microwave photovoltage technique. Several kinds of spin wave
modes due to different contributions of the dipole-dipole and the exchange
interactions are observed. Among them are a series of distinct dipole-exchange
spin wave modes, which allow us to determine precisely the subtle spin boundary
condition. A comprehensive picture for quantized spin excitations in a
ferromagnet with finite size is thereby established. The dispersions of the
quantized spin wave modes have two different branches separated by the
saturation magnetization.Comment: 4 pages, 3 figure
- …
