52,688 research outputs found

    Impurity scattering and Friedel oscillations in mono-layer black phosphorus

    Full text link
    We study the effect of impurity scattering effect in black phosphorurene (BP) in this work. For single impurity, we calculate impurity induced local density of states (LDOS) in momentum space numerically based on tight-binding Hamiltonian. In real space, we calculate LDOS and Friedel oscillation analytically. LDOS shows strong anisotropy in BP. Many impurities in BP are investigated using TT-matrix approximation when the density is low. Midgap states appear in band gap with peaks in DOS. The peaks of midgap states are dependent on impurity potential. For finite positive potential, the impurity tends to bind negative charge carriers and vise versa. The infinite impurity potential problem is related to chiral symmetry in BP

    Atomic Entanglement vs Photonic Visibility for Quantum Criticality of Hybrid System

    Get PDF
    To characterize the novel quantum phase transition for a hybrid system consisting of an array of coupled cavities and two-level atoms doped in each cavity, we study the atomic entanglement and photonic visibility in comparison with the quantum fluctuation of total excitations. Analytical and numerical simulation results show the happen of quantum critical phenomenon similar to the Mott insulator to superfluid transition. Here, the contour lines respectively representing the atomic entanglement, photonic visibility and excitation variance in the phase diagram are consistent in the vicinity of the non-analytic locus of atomic concurrences.Comment: 4 pages, 2 figure

    Anomalies in non-stoichiometric uranium dioxide induced by pseudo-phase transition of point defects

    Full text link
    A uniform distribution of point defects in an otherwise perfect crystallographic structure usually describes a unique pseudo phase of that state of a non-stoichiometric material. With off-stoichiometric uranium dioxide as a prototype, we show that analogous to a conventional phase transition, these pseudo phases also will transform from one state into another via changing the predominant defect species when external conditions of pressure, temperature, or chemical composition are varied. This exotic transition is numerically observed along shock Hugoniots and isothermal compression curves in UO2 with first-principles calculations. At low temperatures, it leads to anomalies (or quasi-discontinuities) in thermodynamic properties and electronic structures. In particular, the anomaly is pronounced in both shock temperature and the specific heat at constant pressure. With increasing of the temperature, however, it transforms gradually to a smooth cross-over, and becomes less discernible. The underlying physical mechanism and characteristics of this type of transition are encoded in the Gibbs free energy, and are elucidated clearly by analyzing the correlation with the variation of defect populations as a function of pressure and temperature. The opportunities and challenges for a possible experimental observation of this phase change are also discussed.Comment: 11 pages, 5 figure
    corecore