52,688 research outputs found
Impurity scattering and Friedel oscillations in mono-layer black phosphorus
We study the effect of impurity scattering effect in black phosphorurene (BP)
in this work. For single impurity, we calculate impurity induced local density
of states (LDOS) in momentum space numerically based on tight-binding
Hamiltonian. In real space, we calculate LDOS and Friedel oscillation
analytically. LDOS shows strong anisotropy in BP. Many impurities in BP are
investigated using -matrix approximation when the density is low. Midgap
states appear in band gap with peaks in DOS. The peaks of midgap states are
dependent on impurity potential. For finite positive potential, the impurity
tends to bind negative charge carriers and vise versa. The infinite impurity
potential problem is related to chiral symmetry in BP
Atomic Entanglement vs Photonic Visibility for Quantum Criticality of Hybrid System
To characterize the novel quantum phase transition for a hybrid system
consisting of an array of coupled cavities and two-level atoms doped in each
cavity, we study the atomic entanglement and photonic visibility in comparison
with the quantum fluctuation of total excitations. Analytical and numerical
simulation results show the happen of quantum critical phenomenon similar to
the Mott insulator to superfluid transition. Here, the contour lines
respectively representing the atomic entanglement, photonic visibility and
excitation variance in the phase diagram are consistent in the vicinity of the
non-analytic locus of atomic concurrences.Comment: 4 pages, 2 figure
Recommended from our members
Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery
A polyisoprene-sulfur (PIPS) copolymer and nano sulfur composite material (90 wt % sulfur) is synthesized through inverse vulcanization of PIP polymer with micrometer-sized sulfur particles for high-areal-capacity lithium sulfur batteries. The polycrystalline structure and nanodomain nature of the copolymer are revealed through high-resolution transmission electron microscopy (HRTEM). PIP polymer is also used as binders for the electrode to further capture the dissovlved polysulfides. A high areal capacity of ca. 7.0 mAh/cm2 and stable cycling are achieved based on the PIPS nanosulfur composite with a PIP binder, crucial to commercialization of lithium sulfur batteries. The chemical confinement both at material and electrode level alleviates the diffusion of polysulfides and the shuttle effect. The sulfur electrodes, both fresh and cycled, are analyzed through scanning electron microscopy (SEM). This approach enables scalable material production and high sulfur utilization at the cell level
Anomalies in non-stoichiometric uranium dioxide induced by pseudo-phase transition of point defects
A uniform distribution of point defects in an otherwise perfect
crystallographic structure usually describes a unique pseudo phase of that
state of a non-stoichiometric material. With off-stoichiometric uranium dioxide
as a prototype, we show that analogous to a conventional phase transition,
these pseudo phases also will transform from one state into another via
changing the predominant defect species when external conditions of pressure,
temperature, or chemical composition are varied. This exotic transition is
numerically observed along shock Hugoniots and isothermal compression curves in
UO2 with first-principles calculations. At low temperatures, it leads to
anomalies (or quasi-discontinuities) in thermodynamic properties and electronic
structures. In particular, the anomaly is pronounced in both shock temperature
and the specific heat at constant pressure. With increasing of the temperature,
however, it transforms gradually to a smooth cross-over, and becomes less
discernible. The underlying physical mechanism and characteristics of this type
of transition are encoded in the Gibbs free energy, and are elucidated clearly
by analyzing the correlation with the variation of defect populations as a
function of pressure and temperature. The opportunities and challenges for a
possible experimental observation of this phase change are also discussed.Comment: 11 pages, 5 figure
- …
