33,869 research outputs found
Nodeless superconductivity in Ca3Ir4Sn13: evidence from quasiparticle heat transport
We report resistivity and thermal conductivity measurements
on CaIrSn single crystals, in which superconductivity with K was claimed to coexist with ferromagnetic spin-fluctuations. Among
three crystals, only one crystal shows a small hump in resistivity near 20 K,
which was previously attributed to the ferromagnetic spin-fluctuations. Other
two crystals show the Fermi-liquid behavior at low temperature.
For both single crystals with and without the resistivity anomaly, the residual
linear term is negligible in zero magnetic field. In low fields,
shows a slow field dependence. These results demonstrate that
the superconducting gap of CaIrSn is nodeless, thus rule out
nodal gap caused by ferromagnetic spin-fluctuations.Comment: 5 pages, 4 figure
An Ultra-fast DOA Estimator with Circular Array Interferometer Using Lookup Table Method
The time-consuming phase ambiguity resolution makes the uniform circular array (UCA) interferometer not suitable for real-time direction-of-arrival (DOA) estimation. This paper introduces the lookup table (LUT) method to solve this problem. The key of the method is that we look up the ambiguity numbers instead of the eventual DOA from the table, and then the DOA is obtained by relatively small amount of calculation. This makes it possible that we are able to shrink the table size while maintain the DOA estimation accuracy. The table addresses cover all possible measured phase differences (PDs), which enables the method to be free of spatial scanning. Moreover, without adding frequency index to the lookup table, the estimator can realize wideband application. As an example, a field-programmable gate array (FPGA) based DOA estimator with the estimation time of 180 ns is presented, accompanied by the measured results. This method possesses the advantages of ultra-high speed, high accuracy and low memory usage
Nodeless superconductivity in IrPtTe with strong spin-orbital coupling
The thermal conductivity of superconductor IrPtTe
( = 0.05) single crystal with strong spin-orbital coupling was measured down
to 50 mK. The residual linear term is negligible in zero magnetic
field. In low magnetic field, shows a slow field dependence. These
results demonstrate that the superconducting gap of IrPtTe is
nodeless, and the pairing symmetry is likely conventional s-wave, despite the
existence of strong spin-orbital coupling and a quantum critical point.Comment: 5 pages, 4 figure
Graph ensemble boosting for imbalanced noisy graph stream classification
© 2014 IEEE. Many applications involve stream data with structural dependency, graph representations, and continuously increasing volumes. For these applications, it is very common that their class distributions are imbalanced with minority (or positive) samples being only a small portion of the population, which imposes significant challenges for learning models to accurately identify minority samples. This problem is further complicated with the presence of noise, because they are similar to minority samples and any treatment for the class imbalance may falsely focus on the noise and result in deterioration of accuracy. In this paper, we propose a classification model to tackle imbalanced graph streams with noise. Our method, graph ensemble boosting, employs an ensemble-based framework to partition graph stream into chunks each containing a number of noisy graphs with imbalanced class distributions. For each individual chunk, we propose a boosting algorithm to combine discriminative subgraph pattern selection and model learning as a unified framework for graph classification. To tackle concept drifting in graph streams, an instance level weighting mechanism is used to dynamically adjust the instance weight, through which the boosting framework can emphasize on difficult graph samples. The classifiers built from different graph chunks form an ensemble for graph stream classification. Experiments on real-life imbalanced graph streams demonstrate clear benefits of our boosting design for handling imbalanced noisy graph stream
Entropy and weak solutions in the thermal model for the compressible Euler equations
Among the existing models for compressible fluids, the one by Kataoka and
Tsutahara (KT model, Phys. Rev. E 69, 056702, 2004) has a simple and rigorous
theoretical background. The drawback of this KT model is that it can cause
numerical instability if the local Mach number exceeds 1. The precise mechanism
of this instability has not yet been clarified. In this paper, we derive
entropy functions whose local equilibria are suitable to recover the Euler-like
equations in the framework of the lattice Boltzmann method for the KT model.
Numerical examples are also given, which are consistent with the above
theoretical arguments, and show that the entropy condition is not fully
guaranteed in KT model. The negative entropy may be the inherent cause for the
non-physical oscillations in the vicinity of the shock. In contrast to these
Karlin's microscopic entropy approach, the corresponding subsidiary entropy
condition in the LBM calculation could also be deduced explicitly from the
macroscopic version, which provides some insights on the numerical instability
of the lattice Boltzmann model for shock calculation.Comment: 27 pages,6 figure
Various Correlations in Anisotropic Heisenberg XYZ Model with Dzyaloshinski-Moriya Interaction
Various thermal correlations as well as the effect of intrinsic decoherence
on the correlations are studied in a two-qubit Heisenberg XYZ spin chain with
the Dzyaloshinski--Moriya (DM) interaction along the z direction, i.e. Dz. It
is found that tunable parameter Dz may play a constructive role on the
concurrence (C), classical correlation (CC) and quantum discord (QD) in thermal
equilibrium while it plays a destructive role on the correlations in the
intrinsic decoherence case. The entanglement and quantum discord exhibit
collapse and revival under the phase decoherence. With a proper combination of
the system parameters, the correlations can effectively be kept at high steady
state values despite the intrinsic decoherence.Comment: 4 pages, 4 figure
- …
