104,670 research outputs found
Binomial coefficients, Catalan numbers and Lucas quotients
Let be an odd prime and let be integers with and . In this paper we determine
mod for ; for example,
where is the Jacobi symbol, and is the Lucas
sequence given by , and for
. As an application, we determine modulo for any integer , where denotes the
Catalan number . We also pose some related conjectures.Comment: 24 pages. Correct few typo
Localization of Relative-Position of Two Atoms Induced by Spontaneous Emission
We revisit the back-action of emitted photons on the motion of the relative
position of two cold atoms. We show that photon recoil resulting from the
spontaneous emission can induce the localization of the relative position of
the two atoms through the entanglement between the spatial motion of individual
atoms and their emitted photons. The result provides a more realistic model for
the analysis of the environment-induced localization of a macroscopic object.Comment: 8 pages and 4 figure
Pair Interaction Potentials of Colloids by Extrapolation of Confocal Microscopy Measurements of Collective Structure
A method for measuring the pair interaction potential between colloidal
particles by extrapolation measurement of collective structure to infinite
dilution is presented and explored using simulation and experiment. The method
is particularly well suited to systems in which the colloid is fluorescent and
refractive index matched with the solvent. The method involves characterizing
the potential of mean force between colloidal particles in suspension by
measurement of the radial distribution function using 3D direct visualization.
The potentials of mean force are extrapolated to infinite dilution to yield an
estimate of the pair interaction potential, . We use Monte Carlo (MC)
simulation to test and establish our methodology as well as to explore the
effects of polydispersity on the accuracy. We use poly-12-hydroxystearic
acid-stabilized poly(methyl methacrylate) (PHSA-PMMA) particles dispersed in
the solvent dioctyl phthalate (DOP) to test the method and assess its accuracy
for three different repulsive systems for which the range has been manipulated
by addition of electrolyte.Comment: 35 pages, 14 figure
A simulation study of two major events in the heliosphere during the present sunspot cycle
The two major disturbances in the heliosphere during the present sunspot cycle, the event of June to August, 1982, and the event of April to June, 1978, are simulated by the method developed by Hakamada and Akasofu (1982). Specifically, an attempt was made to simulate the effects of six major flares from three active regions in June and July, 1982, and April and May, 1978. A comparison of the results with the solar wind observations at Pioneer 12 (approximately 0.8 au), ISEE-3 (approximately 1 au), Pioneer 11 (approximately 7 to 13 au) and Pioneer 10 (approximately 16 to 28 au) suggests that some major flares occurred behind the disk of the sun during the two periods. The method provides qualitatively some information as to how such a series of intense solar flares can greatly disturb both the inner and outer heliospheres. A long lasting effect on cosmic rays is discussed in conjunction with the disturbed heliosphere
Quantum decoherence of excitons in a leaky cavity with quasimode
For the excitons in the quantum well placed within a leaky cavity, the
quantum decoherence of a mesoscopically superposed states is investigated based
on the factorization theory for quantum dissipation. It is found that the
coherence of the exciton superposition states will decrease in an oscillating
form when the cavity field interacting with the exciton is of the form of
quasimode. The effect of the thermal cavity fields on the quantum decoherence
of the superposition states of the exciton is studied and it is observed that
the higher the temperature of the environment is, the shorter the decoherence
characteristic time is.Comment: 1 figure, 7 page
Permutation asymmetry inducing entanglement between degrees of freedom in multiphoton states
We describe and examine entanglement between different degrees of freedom in
multiphoton states based on the permutation properties. From the state
description, the entanglement comes from the permutation asymmetry. According
to the different permutation properties, the multiphoton states can be divided
into several parts. It will help to deal with the multiphoton interference,
which can be used as the measurement of the entanglement.Comment: Final versio
Modelling and control of the flame temperature distribution using probability density function shaping
This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
- …
