11,351 research outputs found

    Approximate perturbed direct homotopy reduction method: infinite series reductions to two perturbed mKdV equations

    Full text link
    An approximate perturbed direct homotopy reduction method is proposed and applied to two perturbed modified Korteweg-de Vries (mKdV) equations with fourth order dispersion and second order dissipation. The similarity reduction equations are derived to arbitrary orders. The method is valid not only for single soliton solution but also for the Painlev\'e II waves and periodic waves expressed by Jacobi elliptic functions for both fourth order dispersion and second order dissipation. The method is valid also for strong perturbations.Comment: 8 pages, 1 figur

    Variational ground states of 2D antiferromagnets in the valence bond basis

    Full text link
    We study a variational wave function for the ground state of the two-dimensional S=1/2 Heisenberg antiferromagnet in the valence bond basis. The expansion coefficients are products of amplitudes h(x,y) for valence bonds connecting spins separated by (x,y) lattice spacings. In contrast to previous studies, in which a functional form for h(x,y) was assumed, we here optimize all the amplitudes for lattices with up to 32*32 spins. We use two different schemes for optimizing the amplitudes; a Newton/conjugate-gradient method and a stochastic method which requires only the signs of the first derivatives of the energy. The latter method performs significantly better. The energy for large systems deviates by only approx. 0.06% from its exact value (calculated using unbiased quantum Monte Carlo simulations). The spin correlations are also well reproduced, falling approx. 2% below the exact ones at long distances. The amplitudes h(r) for valence bonds of long length r decay as 1/r^3. We also discuss some results for small frustrated lattices.Comment: v2: 8 pages, 5 figures, significantly expanded, new optimization method, improved result

    New variable separation approach: application to nonlinear diffusion equations

    Full text link
    The concept of the derivative-dependent functional separable solution, as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the derivative-dependent functional separable solutions is obtained and some exact solutions to the resulting equations are described.Comment: 19 pages, 2 fig

    A Model for the Moving `Wisps' in the Crab Nebula

    Get PDF
    I propose that the moving `wisps' near the center of the Crab Nebula result from nonlinear Kelvin-Helmholtz instabilities in the equatorial plane of the shocked pulsar wind. Recent observations suggest that the wisps trace out circular wavefronts in this plane, expanding radially at speeds approximately less than c/3. Instabilities could develop if there is sufficient velocity shear between a faster-moving equatorial zone and a slower moving shocked pulsar wind at higher latitudes. The development of shear could be related to the existence of a neutral sheet -- with weak magnetic field -- in the equatorial zone, and could also be related to a recent suggestion by Begelman that the magnetic field in the Crab pulsar wind is much stronger than had been thought. I show that plausible conditions could lead to the growth of instabilities at the radii and speeds observed, and that their nonlinear development could lead to the appearance of sharp wisplike features.Comment: 7 pages; 3 postscript figures; LaTex, uses emulateapj.sty; to Appear in the Astrophysical Journal, Feb. 20, 1999, Vol. 51

    Envelope from Miss Baker containing letters from George C. Parkinson, C. W. Emerson, Emeline B. Wells, and Lou Lewis

    Get PDF
    Letters of recommendation for Mercy Rachel Baker

    MHD tidal waves on a spinning magnetic compact star

    Full text link
    In an X-ray binary system, the companion star feeds the compact neutron star with plasma materials via accretions. The spinning neutron star is likely covered with a thin "magnetized ocean" and may support {\it magnetohydrodynamic (MHD) tidal waves}. While modulating the thermal properties of the ocean, MHD tidal waves periodically shake the base of the stellar magnetosphere that traps energetic particles, including radiating relativistic electrons. For a radio pulsar, MHD tidal waves in the stellar surface layer may modulate radio emission processes and leave indelible signatures on timescales different from the spin period. Accretion activities are capable of exciting these waves but may also obstruct or obscure their detections meanwhile. Under fortuitous conditions, MHD tidal waves might be detectable and offer valuable means to probe properties of the underlying neutron star. Similar situations may also occur for a cataclysmic variable -- an accretion binary system that contains a rotating magnetic white dwarf. This Letter presents the theory for MHD tidal waves in the magnetized ocean of a rotating degenerate star and emphasizes their potential diagnostics in X-ray and radio emissions.Comment: ApJ Letter paper already publishe

    Do aeration conditions affect arsenic and phosphate accumulation and phosphate transporter expression in rice (Oryza sativa L.)?

    Get PDF
    Widespread contamination of rice with arsenic (As) has revealed a major exposure pathway to humans. The present study aimed to investigate the effects of oxygen in the rhizosphere on phosphate (P) transporter (for arsenate transportation) expressions, on As and P accumulation and As speciation in four rice genotypes. Oxygenation marginally increased root and shoot length. Total As concentrations in rice roots were dramatically reduced following aeration compared to stagnant treatments (p < 0.001). Aeration treatments significantly increased arsenate while reducing arsenite concentrations in roots (p < 0.001). Root arsenite concentrations were 1.5–2.5 times greater in stagnant than in aeration treatments. Total P concentrations in rice roots were dramatically increased following aeration compared to stagnant treatments. The relative abundance of phosphate transporter (inorganic phosphate transporter and phosphate/H+ symporter family protein) expressions showed downregulation in aeration treatments, particularly for SY-9586, XWX-17, and XWX-12 in inorganic phosphate transporter expressions and XWX-17 in phosphate/H+ symporter family protein expression (p < 0.05). The relative abundance of phosphate carrier protein expressions were relatively higher than the other phosphate transporters, showing upregulation in aeration treatments

    Envelope from Miss Baker containing letters from Mercy Rachel Baker, C. W. Emerson, George C. Parkinson, Lou Lewis, and Emmeline B. Wells

    Get PDF
    Letters concerning a position in the English department at Utah Agricultural College as well as recommendations and testimonials

    Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe

    Full text link
    The Majorana fermion, which is its own anti-particle and obeys non-abelian statistics, plays a critical role in topological quantum computing. It can be realized as a bound state at zero energy, called a Majorana zero mode (MZM), in the vortex core of a topological superconductor, or at the ends of a nanowire when both superconductivity and strong spin orbital coupling are present. A MZM can be detected as a zero-bias conductance peak (ZBCP) in tunneling spectroscopy. However, in practice, clean and robust MZMs have not been realized in the vortices of a superconductor, due to contamination from impurity states or other closely-packed Caroli-de Gennes-Matricon (CdGM) states, which hampers further manipulations of Majorana fermions. Here using scanning tunneling spectroscopy, we show that a ZBCP well separated from the other discrete CdGM states exists ubiquitously in the cores of free vortices in the defect free regions of (Li0.84Fe0.16)OHFeSe, which has a superconducting transition temperature of 42 K. Moreover, a Dirac-cone-type surface state is observed by angle-resolved photoemission spectroscopy, and its topological nature is confirmed by band calculations. The observed ZBCP can be naturally attributed to a MZM arising from this chiral topological surface states of a bulk superconductor. (Li0.84Fe0.16)OHFeSe thus provides an ideal platform for studying MZMs and topological quantum computing.Comment: 32 pages, 15 figures (supplementary materials included), accepted by PR
    • …
    corecore