2,938 research outputs found

    Bilateral Anterior Shoulder Dislocation

    Get PDF
    Introduction: Unilateral anterior shoulder dislocation is one of the most common problems encountered in orthopedic practice. However, simultaneous bilateral anterior dislocation of the shoulders is quite rare. Case Presentation: We report a case of a 75-year-old woman presented with simultaneous bilateral anterior shoulder dislocation following a trauma, complicated with a traction injury to the posterior cord of the brachial plexus. Conclusions: Bilateral anterior shoulder dislocation is very rare. The excessive traction force during closed reduction may lead to nerve palsy. Clear documentation of neurovascular status and adequate imaging before and after a reduction should be performed

    Effective algebraic degeneracy

    Full text link
    We prove that any nonconstant entire holomorphic curve from the complex line C into a projective algebraic hypersurface X = X^n in P^{n+1}(C) of arbitrary dimension n (at least 2) must be algebraically degenerate provided X is generic if its degree d = deg(X) satisfies the effective lower bound: d larger than or equal to n^{{(n+1)}^{n+5}}

    Section Extension from Hyperbolic Geometry of Punctured Disk and Holomorphic Family of Flat Bundles

    Full text link
    The construction of sections of bundles with prescribed jet values plays a fundamental role in problems of algebraic and complex geometry. When the jet values are prescribed on a positive dimensional subvariety, it is handled by theorems of Ohsawa-Takegoshi type which give extension of line bundle valued square-integrable top-degree holomorphic forms from the fiber at the origin of a family of complex manifolds over the open unit 1-disk when the curvature of the metric of line bundle is semipositive. We prove here an extension result when the curvature of the line bundle is only semipositive on each fiber with negativity on the total space assumed bounded from below and the connection of the metric locally bounded, if a square-integrable extension is known to be possible over a double point at the origin. It is a Hensel-lemma-type result analogous to Artin's application of the generalized implicit function theorem to the theory of obstruction in deformation theory. The motivation is the need in the abundance conjecture to construct pluricanonical sections from flatly twisted pluricanonical sections. We also give here a new approach to the original theorem of Ohsawa-Takegoshi by using the hyperbolic geometry of the punctured open unit 1-disk to reduce the original theorem of Ohsawa-Takegoshi to a simple application of the standard method of constructing holomorphic functions by solving the d-bar equation with cut-off functions and additional blowup weight functions

    Banach Analytic Sets and a Non-Linear Version of the Levi Extension Theorem

    Full text link
    We prove a certain non-linear version of the Levi extension theorem for meromorphic functions. This means that the meromorphic function in question is supposed to be extendable along a sequence of complex curves, which are arbitrary, not necessarily straight lines. Moreover, these curves are not supposed to belong to any finite dimensional analytic family. The conclusion of our theorem is that nevertheless the function in question meromorphically extends along an (infinite dimensional) analytic family of complex curves and its domain of existence is a pinched domain filled in by this analytic family.Comment: 19 pages, This is the final version with significant corrections and improvements. To appear in Arkiv f\"or matemati

    Local syzygies of multiplier ideals

    Full text link
    In recent years, multiplier ideals have found many applications in local and global algebraic geometry. Because of their importance, there has been some interest in the question of which ideals on a smooth complex variety can be realized as multiplier ideals. Other than integral closure no local obstructions have been known up to now, and in dimension two it was established by Favre-Jonsson and Lipman-Watanabe that any integrally closed ideal is locally a multiplier ideal. We prove the somewhat unexpected result that multiplier ideals in fact satisfy some rather strong algebraic properties involving higher syzygies. It follows that in dimensions three and higher, multiplier ideals are very special among all integrally closed ideals.Comment: 8 page

    On the cohomology of pseudoeffective line bundles

    Full text link
    The goal of this survey is to present various results concerning the cohomology of pseudoeffective line bundles on compact K{\"a}hler manifolds, and related properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in the case where the curvature is merely semipositive in the sense of currents, and the base manifold is not necessarily projective. In this situation, one can still obtain interesting information on cohomology, e.g. a Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a surjectivity statement for the Lefschetz map. More recently, Junyan Cao, in his PhD thesis defended in Grenoble, obtained a general K{\"a}hler vanishing theorem that depends on the concept of numerical dimension of a given pseudoeffective line bundle. The proof of these results depends in a crucial way on a general approximation result for closed (1,1)-currents, based on the use of Bergman kernels, and the related intersection theory of currents. Another important ingredient is the recent proof by Guan and Zhou of the strong openness conjecture. As an application, we discuss a structure theorem for compact K{\"a}hler threefolds without nontrivial subvarieties, following a joint work with F.Campana and M.Verbitsky. We hope that these notes will serve as a useful guide to the more detailed and more technical papers in the literature; in some cases, we provide here substantially simplified proofs and unifying viewpoints.Comment: 39 pages. This survey is a written account of a lecture given at the Abel Symposium, Trondheim, July 201

    Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds

    Full text link
    We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\mathcal{X} and that of its toric crepant resolution YY coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Y. Ruan's original CRC ["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective spaces X=P(1,,1,n)\mathcal{X}=\mathbb{P}(1,\ldots,1,n) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version, to appear in CM

    Geometric Aspects of the Moduli Space of Riemann Surfaces

    Full text link
    This is a survey of our recent results on the geometry of moduli spaces and Teichmuller spaces of Riemann surfaces appeared in math.DG/0403068 and math.DG/0409220. We introduce new metrics on the moduli and the Teichmuller spaces of Riemann surfaces with very good properties, study their curvatures and boundary behaviors in great detail. Based on the careful analysis of these new metrics, we have a good understanding of the Kahler-Einstein metric from which we prove that the logarithmic cotangent bundle of the moduli space is stable. Another corolary is a proof of the equivalences of all of the known classical complete metrics to the new metrics, in particular Yau's conjectures in the early 80s on the equivalences of the Kahler-Einstein metric to the Teichmuller and the Bergman metric.Comment: Survey article of our recent results on the subject. Typoes corrrecte

    Cohomology of bundles on homological Hopf manifold

    Full text link
    We discuss the properties of complex manifolds having rational homology of S1×S2n1S^1 \times S^{2n-1} including those constructed by Hopf, Kodaira and Brieskorn-van de Ven. We extend certain previously known vanishing properties of cohomology of bundles on such manifolds.As an application we consider degeneration of Hodge-deRham spectral sequence in this non Kahler setting.Comment: To appear in Proceedings of 2007 conference on Several complex variables and Complex Geometry. Xiamen. Chin

    Computer simulations of electrorheological fluids in the dipole-induced dipole model

    Full text link
    We have employed the multiple image method to compute the interparticle force for a polydisperse electrorheological (ER) fluid in which the suspended particles can have various sizes and different permittivites. The point-dipole (PD) approximation being routinely adopted in computer simulation of ER fluids is shown to err considerably when the particles approach and finally touch due to multipolar interactions. The PD approximation becomes even worse when the dielectric contrast between the particles and the host medium is large. From the results, we show that the dipole-induced-dipole (DID) model yields very good agreements with the multiple image results for a wide range of dielectric contrasts and polydispersity. As an illustration, we have employed the DID model to simulate the athermal aggregation of particles in ER fluids both in uniaxial and rotating fields. We find that the aggregation time is significantly reduced. The DID model accounts for multipolar interaction partially and is simple to use in computer simulation of ER fluids.Comment: 22 pages, 7 figures, submitted to Phys. Rev.
    corecore