75,134 research outputs found
Quaternion Electromagnetism and the Relation with 2-Spinor Formalism
By using complex quaternion, which is the system of quaternion representation
extended to complex numbers, we show that the laws of electromagnetism can be
expressed much more simply and concisely. We also derive the quaternion
representation of rotations and boosts from the spinor representation of
Lorentz group. It is suggested that the imaginary 'i' should be attached to the
spatial coordinates, and observe that the complex conjugate of quaternion
representation is exactly equal to parity inversion of all physical quantities
in the quaternion. We also show that using quaternion is directly linked to the
two-spinor formalism. Finally, we discuss meanings of quaternion, octonion and
sedenion in physics as n-fold rotationComment: Version published in journal Universe (2019
Recommended from our members
Sparse kernel density estimation technique based on zero-norm constraint
A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance
Neutron Stars with Bose-Einstein Condensation of Antikaons as MIT Bags
We investigate the properties of an antikaon in medium, regarding itas a MIT
bag. We first construct the MIT bag model for a kaon with and
in order to describe the interaction of-quarks in hyperonic matter in the
framework of the modifiedquark-meson coupling model. The coupling constant
in the density-dependent bag constant is treated
as afree parameter to reproduce the optical potential of a kaon in asymmetric
matter and all other couplings are determined by usingSU(6) symmetry and the
quark counting rule. With various values ofthe kaon potential, we calculate the
effective mass of a kaon inmedium to compare it with that of a point-like kaon.
We thencalculate the population of octet baryons, leptons and and
theequation of state for neutron star matter. The results show thatkaon
condensation in hyperonic matter is sensitive to the -quarkinteraction and
also to the way of treating the kaon. The mass andthe radius of a neutron star
are obtained by solving theTolmann-Oppenheimer-Volkoff equation.Comment: 14 figure
Recommended from our members
Radial basis function classifier construction using particle swarm optimisation aided orthogonal forward regression
We develop a particle swarm optimisation (PSO)
aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation
A Tri-band-notched UWB Antenna with Low Mutual Coupling between the Band-notched Structures
A compact printed U-shape ultra-wideband (UWB) antenna with triple band-notched characteristics is presented. The proposed antenna, with compact size of 24×33 mm2, yields an impedance bandwidth of 2.8-12GHz for VSWR<2, except the notched bands. The notched bands are realized by introducing two different types of slots. Two C-shape half-wavelength slots are etched on the radiating patch to obtain two notched bands in 3.3-3.7GHz for WiMAX and 7.25-7.75GHz for downlink of X-band satellite communication systems. In order to minimize the mutual coupling between the band-notched structures, the middle notched band in 5-6GHz for WLAN is achieved by using a U-slot defected ground structure. The parametric study is carried out to understand the mutual coupling. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications
Electro-optic scanning of light coupled from a corrugated LiNbO3 waveguide
Light diffracted from a grating output coupler in a Ti-diffused LiNbO3 waveguide is scanned electro-optically. Using a coupling length of 2.5 mm in our arrangement we have demonstrated a scanning capability of one resolved spot per 3 V/µm applied field
Quantum interference in dirty d-wave superconductors
The local differential tunneling conductance on a Zn impurity in a disordered
d-wave superconductors is studied. Quantum interference between many impurities
leads to definitive quasiparticle spectra. We suggest that an elaborate
analysis on impurity-induced spectra with quantum interference effect included
may be able to pin down the sign and strength of the scattering potential of a
Zn impurity in low density limit. Numerical simulations calculated with
appropriately determined impurity parameters are in satisfactory agreement with
the observations from scanning tunneling microscopy (STM) experiments even in
subtle details
- …
