30,193 research outputs found
Lyapunov Spectra in SU(2) Lattice Gauge Theory
We develop a method for calculating the Lyapunov characteristic exponents of
lattice gauge theories. The complete Lyapunov spectrum of SU(2) gauge theory is
obtained and Kolmogorov-Sinai entropy is calculated. Rapid convergence with
lattice size is found.Comment: 7pp, DUKE-TH-93-5
Temperature Dependent Empirical Pseudopotential Theory For Self-Assembled Quantum Dots
We develop a temperature dependent empirical pseudopotential theory to study
the electronic and optical properties of self-assembled quantum dots (QDs) at
finite temperature. The theory takes the effects of both lattice expansion and
lattice vibration into account. We apply the theory to the InAs/GaAs QDs. For
the unstrained InAs/GaAs heterostructure, the conduction band offset increases
whereas the valence band offset decreases with increasing of the temperature,
and there is a type-I to type-II transition at approximately 135 K. Yet, for
InAs/GaAs QDs, the holes are still localized in the QDs even at room
temperature, because the large lattice mismatch between InAs and GaAs greatly
enhances the valence band offset. The single particle energy levels in the QDs
show strong temperature dependence due to the change of confinement potentials.
Because of the changes of the band offsets, the electron wave functions
confined in QDs increase by about 1 - 5%, whereas the hole wave functions
decrease by about 30 - 40% when the temperature increases from 0 to 300 K. The
calculated recombination energies of exciton, biexciton and charged excitons
show red shifts with increasing of the temperature, which are in excellent
agreement with available experimental data
BRCA1 positively regulates FOXO3 expression by restricting FOXO3 gene methylation and epigenetic silencing through targeting EZH2 in breast cancer
Hamiltonian Dynamics of Yang-Mills Fields on a Lattice
We review recent results from studies of the dynamics of classical Yang-Mills
fields on a lattice. We discuss the numerical techniques employed in solving
the classical lattice Yang-Mills equations in real time, and present results
exhibiting the universal chaotic behavior of nonabelian gauge theories. The
complete spectrum of Lyapunov exponents is determined for the gauge group
SU(2). We survey results obtained for the SU(3) gauge theory and other
nonlinear field theories. We also discuss the relevance of these results to the
problem of thermalization in gauge theories.Comment: REVTeX, 51 pages, 20 figure
A 1.3 cm Line Survey toward Orion KL
Orion KL has served as a benchmark for spectral line searches throughout the
(sub)millimeter regime. The main goal is to systematically study spectral
characteristics of Orion KL in the 1.3 cm band. We carried out a spectral line
survey (17.9 GHz to 26.2 GHz) with the Effelsberg-100 m telescope towards Orion
KL. We find 261 spectral lines, yielding an average line density of about 32
spectral features per GHz above 3. The identified lines include 164
radio recombination lines (RRLs) and 97 molecular lines. A total of 23
molecular transitions from species known to exist in Orion KL are detected for
the first time in the interstellar medium. Non-metastable 15NH3 transitions are
detected in Orion KL for the first time. Based on the velocity information of
detected lines and the ALMA images, the spatial origins of molecular emission
are constrained and discussed. A narrow feature is found in SO2
(), possibly suggesting the presence of a maser line. Column
densities and fractional abundances relative to H2 are estimated for 12
molecules with LTE methods. Rotational diagrams of non-metastable 14NH3
transitions with J=K+1 to J=K+4 yield different results; metastable 15NH3 is
found to have a higher excitation temperature than non-metastable 15NH3,
indicating that they may trace different regions. Elemental and isotopic
abundance ratios are estimated: 12C/13C=63+-17, 14N/15N=100+-51,
D/H=0.0083+-0.0045. The dispersion of the He/H ratios derived from
H/He pairs to H/He pairs is very small, which
is consistent with theoretical predictions that the departure coefficients bn
factors for hydrogen and helium are nearly identical. Based on a non-LTE code
neglecting excitation by the infrared radiation field and a likelihood
analysis, we find that the denser regions have lower kinetic temperature, which
favors an external heating of the Hot Core.Comment: 70 pages, 26 figures, 12 tables, accepted for publication in A&A.
Figs. 1, 2, 8, 9 have been downsize
Numerical evidences of spin-1/2 chain approaching spin-1 chain
In this article, we study the one dimensional Heisenberg spin-1/2 alternating
bond chain in which the nearest neighbor exchange couplings are ferromagnetic
(FM) and antiferromagnetic (AF) alternatively. By using exact diagonalization
and density matrix renormalization groups (DMRG) method, we discuss how the
system approaches to the AF uniform spin-1 chain under certain condition. When
the ratio of AF to FM coupling strength}
\textit{is very small, the physical quantities of the alternating bond chain
such as the spin-spin correlation, the string correlation function and the spin
density coincide with that of the AF uniform spin-1 chain. The edge state
problem is discussed in the present model with small}\textit{limit. In
addition, the Haldane gap of the AF uniform spin-1 chain is 4-times of the gap
of the system considered.Comment: 9pages,8page
Quantifying the complexity of random Boolean networks
We study two measures of the complexity of heterogeneous extended systems,
taking random Boolean networks as prototypical cases. A measure defined by
Shalizi et al. for cellular automata, based on a criterion for optimal
statistical prediction [Shalizi et al., Phys. Rev. Lett. 93, 118701 (2004)],
does not distinguish between the spatial inhomogeneity of the ordered phase and
the dynamical inhomogeneity of the disordered phase. A modification in which
complexities of individual nodes are calculated yields vanishing complexity
values for networks in the ordered and critical regimes and for highly
disordered networks, peaking somewhere in the disordered regime. Individual
nodes with high complexity are the ones that pass the most information from the
past to the future, a quantity that depends in a nontrivial way on both the
Boolean function of a given node and its location within the network.Comment: 8 pages, 4 figure
Towards the Equation of State of Classical SU(2) Lattice Gauge Theory
We determine numerically the full complex Lyapunov spectrum of SU(2)
Yang-Mills fields on a 3-dimensional lattice from the classical chaotic
dynamics. The equation of state, S(E), is determined from the Kolmogorov-Sinai
entropy extrapolated to the large size limit.Comment: 12 pages, 8 PS figures, LaTe
- …
