92,322 research outputs found
Paraxial full-field cloaking
We complete the `paraxial' (small-angle) ray optics cloaking formalism
presented previously [Choi and Howell, Opt. Express 22, 29465 (2014)], by
extending it to the full-field of light. Omnidirectionality is then the only
relaxed parameter of what may be considered an ideal, broadband, field cloak.
We show that an isotropic plate of uniform thickness, with appropriately
designed refractive index and dispersion, can match the phase over the whole
visible spectrum. Our results support the fundamental limits on cloaking for
broadband vs. omnidirectionality, and provide insights into when anisotropy may
be required
Paraxial ray optics cloaking
Despite much interest and progress in optical spatial cloaking, a
three-dimensional (3D), transmitting, continuously multidirectional cloak in
the visible regime has not yet been demonstrated. Here we experimentally
demonstrate such a cloak using ray optics, albeit with some edge effects. Our
device requires no new materials, uses isotropic off-the-shelf optics, scales
easily to cloak arbitrarily large objects, and is as broadband as the choice of
optical material, all of which have been challenges for current cloaking
schemes. In addition, we provide a concise formalism that quantifies and
produces perfect optical cloaks in the small-angle (`paraxial') limit
Anti-correlated time lags in the Z source GX 5-1: Possible evidence for a truncated accretion disk
We investigate the nature of the inner accretion disk in the neutron star
source GX 5-1 by making a detailed study of time lags between X-rays of
different energies. Using the cross-correlation analysis, we found
anti-correlated hard and soft time lags of the order of a few tens to a few
hundred seconds and the corresponding intensity states were mostly the
horizontal branch (HB) and upper normal branch (NB). The model independent and
dependent spectral analysis showed that during these time lags the structure of
accretion disk significantly varied. Both eastern and western approaches were
used to unfold the X-ray continuum and systematic changes were observed in soft
and hard spectral components. These changes along with a systematic shift in
the frequency of quasi-periodic oscillations (QPOs) made it substantially
evident that the geometry of the accretion disk is truncated. Simultaneous
energy spectral and power density spectral study shows that the production of
the horizontal branch oscillations (HBOs) are closely related to the
Comptonizing region rather than the disk component in the accretion disk. We
found that as the HBO frequency decreases from the hard apex to upper HB, the
disk temperature increases along with an increase in the coronal temperature
which is in sharp contrast with the changes found in black hole binaries where
the decrease in QPO frequency is accompanied by a decrease in the disk
temperature and a simultaneous increase in the coronal temperature. We discuss
the results in the context of re-condensation of coronal material in the inner
region of the disk.Comment: 40 pages, 7 figures, accepted for publication in The Astrophysical
Journal Supplement (ApJS
Ku-band system design study and TDRSS interface analysis
The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated
Spin-transfer torque in magnetic multilayer nanopillars
We consider a quasi one-dimensional configuration consisting of two small
pieces of ferromagnetic material separated by a metallic one and contacted by
two metallic leads. A spin-polarized current is injected from one lead. Our
goal is to investigate the correlation induced between the magnetizations of
the two ferromagnets by spin-transfer torque. This torque results from the
interaction between the magnetizations and the spin polarization of the
current. We discuss the dynamics of a single ferromagnet, the extension to the
case of two ferromagnets, and give some estimates for the parameters based on
experiments.Comment: To appear in the Journal of Physics: Conference Series (Proceedings
of the International Conference on Nanoscience and Technology, Basel, 2006
- …
